Skip to main content
Log in

Intrinsically stretchable field-effect transistors

  • Stretchable and Ultraflexible Organic Electronics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A thin-film field-effect transistor (TFT) is a three-terminal device comprising source, drain, and gate electrodes, a dielectric layer, a semiconductor layer, and a substrate. The TFT is a fundamental building component in a variety of electronic devices. Developing an intrinsically stretchable TFT entails availability and usage of a functional material with elastomeric deformability in response to an externally applied stress. This represents a major materials challenge. In this article, we survey strategies to synthesize these elastomeric functional materials, and how these materials are assembled to fabricate intrinsically stretchable TFT devices. Developing solution-based printing technology to assemble intrinsically stretchable TFTs is considered a prospective strategy for wearable electronics for industrial adaptation in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M. Vosgueritchian, J.B.-H. Tok, Z. Bao, Nat. Photonics 7, 769 (2013).

    Article  Google Scholar 

  2. J. Liang, L. Li, D. Chen, T. Hajagos, Z. Ren, S. Chou, W. Hu, Q. Pei, Nat. Commun. 6, 7647 (2015).

    Article  Google Scholar 

  3. D.H. Kim, J. Xiao, J. Song, Y. Huang, J.A. Rogers, Adv. Mater. 22, 2108 (2010).

    Article  Google Scholar 

  4. J.A. Rogers, T. Someya, Y. Huang, Science 327, 1603 (2010).

    Article  Google Scholar 

  5. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 499, 458 (2013).

    Article  Google Scholar 

  6. D.-H. Kim, J. Song, W.M. Choi, H.-S. Kim, R.-H. Kim, Z. Liu, Y.Y. Huang, K.-C. Hwang, Y.W. Zhang, J.A. Rogers, Proc. Natl. Acad. Sci. U.S.A. 105, 18675 (2008).

    Article  Google Scholar 

  7. A. Chortos, J. Lim, J.W.F. To, M. Vosgueritchian, T.J. Dusseault, T.H. Kim, S. Hwang, Z.N. Bao, Adv. Mater. 26, 4253 (2014).

    Article  Google Scholar 

  8. S.H. Chae, W.J. Yu, J.J. Bae, D.L. Duong, D. Perello, H.Y. Jeong, Q.H. Ta, T.H. Ly, Q.A. Vu, M. Yun, X.F. Duan, Y.H. Lee, Nat. Mater. 12, 403 (2013).

    Article  Google Scholar 

  9. S.-K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C. Lee, B.H. Hong, J.A. Rogers, J.H. Cho, J.-H. Ahn, Nano Lett. 11, 4642 (2011).

    Article  Google Scholar 

  10. J. Pu, Y. Zhang, Y. Wada, J. Wang, L.J. Li, Y. Iwasa, T. Takenobu, Appl. Phys. Lett. 103, 023505 (2013).

    Article  Google Scholar 

  11. Y.-L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y.C. Chiu, V. Feig, J. Xu, T. Kurosawa, X.D. Gu, C. Wang, M. He, J.W. Chung, Z.N. Bao, J. Am. Chem. Soc. 138, 6020 (2016).

    Article  Google Scholar 

  12. M. Shin, J.H. Song, G.H. Lim, B. Lim, J.J. Park, U. Jeong, Adv. Mater. 26, 3706 (2014).

    Article  Google Scholar 

  13. J. Liang, K. Tong, Q.A. Pei, Adv. Mater. 28, 5986 (2016).

    Article  Google Scholar 

  14. D. McCoul, W. Hu, M. Gao, V. Mehta, Q. Pei, Adv. Electron. Mater. 2, 1500407 (2016).

    Article  Google Scholar 

  15. D. Chen, J. Liang, Q. Pei, Sci. China Chem. 59, 659 (2016).

    Article  Google Scholar 

  16. F. Xu, M.Y. Wu, N.S. Safron, S.S. Roy, R.M. Jacobberger, D.J. Bindl, J.H. Seo, T.H. Chang, Z. Ma, M.S. Arnold, Nano Lett. 14, 682 (2014).

    Article  Google Scholar 

  17. D. Kong, R. Pfattner, A. Chortos, C. Lu, A.C. Hinckley, C. Wang, W.-Y. Lee, J.W. Chung, Z. Bao, Adv. Funct. Mater. 26, 4680 (2016).

    Article  Google Scholar 

  18. H. Liu, L. Zhang, D. Yang, N. Ning, Y. Yu, L. Yao, B. Yan, M. Tian, J. Phys. D Appl. Phys. 45, 485303 (2012).

    Article  Google Scholar 

  19. C. Mali, S. Chavan, K. Kanse, A. Kumbharkhane, S. Mehrotra, Indian J. Pure Appl. Phys. 45, 476 (2007).

    Google Scholar 

  20. B. O’Connor, E.P Chan, C. Chan, B.R. Conrad, L.J. Richter, R.J. Kline, M. Heeney, I. McCulloch, C.L. Soles, D.M. DeLongchamp, ACS Nano 4, 7538 (2010).

    Article  Google Scholar 

  21. S. Savagatrup, A.D. Printz, T.F. O’Connor, A.V. Zaretski, D.J. Lipomi, Chem. Mater. 26, 3028 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0074), the National Science Foundation (Grant No. 1638163), and the Ministry of Science and Technology of China (Grant No. 0102014DFA52030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajie Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Tong, K., Sun, H. et al. Intrinsically stretchable field-effect transistors. MRS Bulletin 42, 131–137 (2017). https://doi.org/10.1557/mrs.2016.326

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.326

Navigation