Skip to main content
Log in

Particles at fluid–fluid interfaces: From single-particle behavior to hierarchical assembly of materials

  • Water at Functional Interfaces
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Particles ranging in size from a few nanometers to tens of micrometers have a strong tendency to adsorb at interfaces between two immiscible fluids (e.g., water and oil or air). The driving force for this strong interfacial attachment is a reduction in interfacial area, and thus, interfacial energy. To design and engineer the structure and properties of materials constructed by such colloidal systems, it is imperative to understand the behavior of particles at fluid interfaces at the single-particle level and to establish the relationship between the microscopic behavior of interfacial particles and the bulk properties of particle-laden interfaces. In this article, we present background information on the behavior of particles at fluid–fluid interfaces and highlight recent advances in understanding the effects of particle shape and surface wettability on the behavior of particles at the interfaces. We also discuss recent advances in using interfacial attachment to direct the assembly of nanomaterials to create hierarchical structures with designed properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. B.P. Binks, T.S. Horozov, Colloidal Particles at Liquid Interfaces (Cambridge University Press, New York, 2006).

    Google Scholar 

  2. W. Trahar, L. Warren, Int. J. Miner. Process. 3, 103 (1976).

    Google Scholar 

  3. R. Crawford, J. Ralston, Inter. J. Miner. Process. 23, 1 (1988).

    Google Scholar 

  4. E. Dickinson, Curr. Opin. Colloid Interface Sci. 15, 40 (2010).

    Google Scholar 

  5. J. Frelichowska, M.-A. Bolzinger, J. Pelletier, J.-P. Valour, Y. Chevalier, Int. J. Pharm. 371, 56 (2009).

    Google Scholar 

  6. J. Frelichowska, M.-A. Bolzinger, J.-P. Valour, H. Mouaziz, J. Pelletier, Y. Chevalier, Int. J. Pharm. 368, 7 (2009).

    Google Scholar 

  7. A.P. Sullivan, P.K. Kilpatrick, Ind. Eng. Chem. Res. 41, 3389 (2002).

    Google Scholar 

  8. S. Crossley, J. Faria, M. Shen, D.E. Resasco, Science 327, 68 (2010).

    Google Scholar 

  9. G.G. Roberts, Langmuir–Blodgett Films (Plenum Press, New York, 1990).

    Google Scholar 

  10. T. Brugarolas, F. Tu, D. Lee, Soft Matter 9, 9046 (2013).

    Google Scholar 

  11. S. Lam, E. Blanco, S.K. Smoukov, K.P. Velikov, O.D. Velev, J. Am. Chem. Soc. 133, 13856 (2011).

    Google Scholar 

  12. J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J. Huang, J. Am. Chem. Soc. 132, 8180 (2010).

    Google Scholar 

  13. R. Murakami, H. Moriyama, M. Yamamoto, B.P. Binks, A. Rocher, Adv. Mater. 24, 767 (2012).

    Google Scholar 

  14. P. Guo, H. Song, X. Chen, J. Mater. Chem. 20, 4867 (2010).

    Google Scholar 

  15. J.J. Shao, W. Lv, Q.H. Yang, Adv. Mater. 26, 5586 (2014).

    Google Scholar 

  16. A.R. Studart, U.T. Gonzenbach, I. Akartuna, E. Tervoort, L.J. Gauckler, J. Mater. Chem. 17, 3283 (2007).

    Google Scholar 

  17. B. Liu, W. Wei, X. Qu, Z. Yang, Angew. Chem. Int. Ed. 120, 4037 (2008).

    Google Scholar 

  18. A. Kumar, B.J. Park, F. Tu, D. Lee, Soft Matter 9, 6604 (2013).

    Google Scholar 

  19. A. Walther, A.H.E. Muller, Soft Matter 4, 663 (2008).

    Google Scholar 

  20. J. Hu, S. Zhou, Y. Sun, X. Fang, L. Wu, Chem. Soc. Rev. 41, 4356 (2012).

    Google Scholar 

  21. T.M. Ruhland, A.H. Gröschel, A. Walther, A.H.E. Müller, Langmuir 27, 9807 (2011).

    Google Scholar 

  22. B.P. Binks, Curr. Opin. Colloid Interface Sci. 7, 21 (2002).

    Google Scholar 

  23. B. Madivala, J. Fransaer, J. Vermant, Langmuir 25, 2718 (2009).

    Google Scholar 

  24. E.P. Lewandowski, M. Cavallaro, L. Botto, J.C. Bernate, V. Garbin, K.J. Stebe, Langmuir 26, 15142 (2010).

    Google Scholar 

  25. E.P. Lewandowski, P.C. Searson, K.J. Stebe, J. Phys. Chem. B 110, 4283 (2006).

    Google Scholar 

  26. S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007).

    Google Scholar 

  27. Q. Chen, J.K. Whitmer, S. Jiang, S.C. Bae, E. Luijten, S. Granick, Science 331, 199 (2011).

    Google Scholar 

  28. P.G. de Gennes, Rev. Mod. Phys. 64, 645 (1992).

    Google Scholar 

  29. B.P. Binks, P.D.I. Fletcher, Langmuir 17, 4708 (2001).

    Google Scholar 

  30. C. Casagrande, P. Fabre, E. Raphael, M. Veyssié, Europhys. Lett. 9, 251 (1989).

    Google Scholar 

  31. S. Jiang, S. Granick, J. Chem. Phys. 127, 161102 (2007).

    Google Scholar 

  32. B.J. Park, C.-H. Choi, S.-M. Kang, K.E. Tettey, C.-S. Lee, D. Lee, Soft Matter 9, 3383 (2013).

    Google Scholar 

  33. B.J. Park, C.-H. Choi, S.-M. Kang, K.E. Tettey, C.-S. Lee, D. Lee, Langmuir 29, 1841 (2013).

    Google Scholar 

  34. B.J. Park, D. Lee, ACS Nano 6, 782 (2012).

    Google Scholar 

  35. B.J. Park, D. Lee, Soft Matter 8, 7690 (2012).

    Google Scholar 

  36. H. Fan, D.E. Resasco, A. Striolo, Langmuir 27, 5264 (2011).

    Google Scholar 

  37. T. Ondarçuhu, P. Fabre, E. Raphaël, M. Veyssié, J. Phys. Fr. 51, 1527 (1990).

    Google Scholar 

  38. H. Rezvantalab, S. Shojaei-Zadeh, Soft Matter 9, 3640 (2013).

    Google Scholar 

  39. B.J. Park, J. Vermant, E.M. Furst, Soft Matter 6, 5327 (2010).

    Google Scholar 

  40. P. Pieranski, Phys. Rev. Lett. 45, 569 (1980).

    Google Scholar 

  41. A.J. Hurd, J. Phys. A: Math. Gen. 45, L1055 (1985).

    Google Scholar 

  42. R. Aveyard, J.H. Clint, D. Nees, V.N. Paunov, Langmuir 16, 1969 (2000).

    Google Scholar 

  43. R. Aveyard, B.P. Binks, J.H. Clint, P.D.I. Fletcher, T.S. Horozov, B. Neumann, V.N. Paunov, J. Annesley, S.W. Botchway, D. Nees, A.W. Parker, A.D. Ward, A.N. Burgess, Phys. Rev. Lett. 88, 246102 (2002).

    Google Scholar 

  44. B.J. Park, J.P. Pantina, E.M. Furst, M. Oettel, S. Reynaert, J. Vermant Langmuir 24, 1686 (2008).

  45. K. Masschaele, B.J. Park, E.M. Furst, J. Fransaer, J. Vermant, Phys. Rev. Lett. 105, 048303 (2010).

    Google Scholar 

  46. M. Oettel, S. Dietrich, Langmuir 24, 1425 (2008).

    Google Scholar 

  47. K.D. Danov, P.A. Kralchevsky, B.N. Naydenov, G. Brenn, J. Colloid Interface Sci. 287, 121 (2005).

    Google Scholar 

  48. P.A. Kralchevsky, K. Nagayama, Langmuir 10, 23 (1994).

    Google Scholar 

  49. B.J. Park, E.M. Furst, Soft Matter 7, 7676 (2011).

    Google Scholar 

  50. D. Stamou, C. Duschl, D. Johannsmann, Phys. Rev. E 62, 5263 (2000).

    Google Scholar 

  51. L. Botto, E.P. Lewandowski, M. Cavallaro, K.J. Stebe, Soft Matter 8, 9957 (2012).

    Google Scholar 

  52. L. Botto, L. Yao, R.L. Leheny, K.J. Stebe, Soft Matter 8, 4971 (2012).

    Google Scholar 

  53. T. Brugarolas, B.J. Park, D. Lee, Adv. Funct. Mater. 21, 3924 (2011).

    Google Scholar 

  54. J.C. Loudet, A.M. Alsayed, J. Zhang, A.G. Yodh, Phys. Rev. Lett. 94, 018301 (2005).

    Google Scholar 

  55. J.C. Loudet, B. Pouligny, Europhys. Lett. 85, 28003 (2009).

    Google Scholar 

  56. S. Reynaert, P. Moldenaers, J. Vermant, Langmuir 22, 4936 (2006).

    Google Scholar 

  57. B.J. Park, E.M. Furst, Langmuir 24, 13383 (2008).

    Google Scholar 

  58. B. Park, E. Furst, Macromol. Res. 21, 1167 (2013).

    Google Scholar 

  59. J.D. Feick, N. Chukwumah, A.E. Noel, D. Velegol, Langmuir 20, 3090 (2004).

    Google Scholar 

  60. B.J. Park, E.M. Furst, Soft Matter 7, 7683 (2011).

    Google Scholar 

  61. P.J. Yunker, T. Still, M.A. Lohr, A. Yodh, Nature 476, 308 (2011).

    Google Scholar 

  62. M. Cavallaro, L. Botto, E.P. Lewandowski, M. Wang, K.J. Stebe, Proc. Natl. Acad. Sci. U.S.A. 108, 20923 (2011).

    Google Scholar 

  63. B.J. Park, T. Brugarolas, D. Lee, Soft Matter 7, 6413 (2011).

    Google Scholar 

  64. J.-Y. Wang, Y. Wang, S.S. Sheiko, D.E. Betts, J.M. DeSimone, J. Am. Chem. Soc. 134, 5801 (2011).

    Google Scholar 

  65. H. Kuhn, D. Möbius, H. Bücher, in Physical Methods of Chemistry, A. Weissberger, B.W. Rossiter, Eds. (Wiley, New York, 1972), vol. 1, part 3B, p. 577.

  66. B.P. Binks, R. Murakami, Nat. Mater. 5, 865 (2006).

    Google Scholar 

  67. A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz, Science 298, 1006 (2002).

    Google Scholar 

  68. D. Lee, D.A. Weitz, Small 5, 1932 (2009).

    Google Scholar 

  69. E. Blanco, S. Lam, S.K. Smoukov, K.P. Velikov, S.A. Khan, O.D. Velev, Langmuir 29, 10019 (2013).

    Google Scholar 

  70. A.-L. Fameau, S. Lam, O.D. Velev, Chem. Sci. 4, 3874 (2013).

    Google Scholar 

  71. S.H. Lee, H.W. Kim, J.O. Hwang, W.J. Lee, J. Kwon, C.W. Bielawski, R.S. Ruoff, S.O. Kim, Angew. Chem. Int. Ed. 122, 10282 (2010).

    Google Scholar 

  72. S. Torquato, Soft Matter 5, 1157 (2009).

    Google Scholar 

Download references

Acknowledgements

B.J.P. acknowledges funding from the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT & Future Planning (NRF-2014R1A1A1005727). D.L. acknowledges financial support from Xerox and NSF (CAREER Award DMR-1055594 and PENN MRSEC DMR11-20901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bum Jun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B.J., Lee, D. Particles at fluid–fluid interfaces: From single-particle behavior to hierarchical assembly of materials. MRS Bulletin 39, 1089–1098 (2014). https://doi.org/10.1557/mrs.2014.253

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.253

Navigation