Skip to main content
Log in

In situ high-resolution transmission electron microscopy of material reactions

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A review is presented of the development of in situ high-resolution transmission electron microscopy (HRTEM) and its application to directly study the atomic behavior in thermally activated material reactions. Not only are the atomic re-arrangements continuously recorded, but kinetic measurements can be made at controlled elevated temperatures. Examples include work on the atomic motion on CdTe surface ledges, solid phase epitaxial regrowth of silicon, crystallization of amorphous silicon and of amorphous tantalum oxide thin films, solid-state amorphization at metal-silicon interfaces, metal-induced crystallization of amorphous silicon, germanium and carbon, phase separation and crystallization in hafnium silicate thin films, and “spiking” across thin gate oxides separating nickel silicide from a monocrystalline silicon substrate. The future prospects of in situ HRTEM are discussed, and the increasing breadth of application of this approach is recognized, especially in light of the advances in HRTEM capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. S. Iijima, J. Appl. Phys. 42, 5891 (1971).

    Google Scholar 

  2. J.M. Cowley, S. Iijima, Zeitschrift 27, 445 (1972).

    Google Scholar 

  3. H. Hashimoto, Y. Takai, Y. Yokota, H. Endo, E. Fukuta, Jpn. J. Appl. Phys. 19, L1 (1980).

    Google Scholar 

  4. R. Sinclair, T. Yamashita, F.A. Ponce, Nature 290, 386 (1981).

    Google Scholar 

  5. R. Sinclair, F.A. Ponce, T. Yamashita, D.J. Smith, R.A. Camps, L.A. Freeman, S.J. Erasmus, W.C. Nixon, K.C.A. Smith, C.J.D. Catto, Nature 298, 127 (1982).

    Google Scholar 

  6. R. Sinclair, M.A. Parker, Nature 322, 531 (1986).

    Google Scholar 

  7. J.C. Bravman, R. Sinclair, J. Electron Microsc. Tech. 1, 53 (1984).

    Google Scholar 

  8. M.A. Parker, PhD degree thesis, Stanford University (1988).

  9. R. Sinclair, M.A. Parker, K.B. Kim, Ultramicroscopy 23, 383 (1987).

    Google Scholar 

  10. R. Sinclair, T. Yamashita, M.A. Parker, K.B. Kim, K. Holloway, A.F. Schwartzman, Acta Crystallogr. Sect. A: Found. Crystallogr. 44, 965 (1988).

    Google Scholar 

  11. D.H. Ko, R. Sinclair, Ultramicroscopy 54, 166 (1994).

    Google Scholar 

  12. R.B. Schwarz, W.L. Johnson, Phys. Rev. Lett. 51, 415 (1983)

  13. K. Holloway, R. Sinclair, J. Appl. Phys. 61, 1359 (1987).

    Google Scholar 

  14. S. Ogawa, T. Yoshida, T. Kouzaki, R. Sinclair, J. Appl. Phys. 70, 827 (1991).

    Google Scholar 

  15. K. Holloway, R. Sinclair, J. Less-Common Met. 140, 139 (1988).

    Google Scholar 

  16. K. Holloway, R. Sinclair, M. Nathan, J. Vac. Sci. Technol., A7, 1479 (1989).

  17. K.W. Kwon, H.J. Lee, R. Sinclair, Appl. Phys. Lett. 75, 935 (1999).

    Google Scholar 

  18. H.J. Lee, K.W. Kwon, C. Ryu, R. Sinclair, Acta Mater. 47, 3965 (1999).

    Google Scholar 

  19. T.J. Konno, R. Sinclair, Philos. Mag. B 66, 749 (1992).

    Google Scholar 

  20. T.J. Konno, R. Sinclair, Philos. Mag. B 71, 163 (1995).

    Google Scholar 

  21. T.J. Konno, R. Sinclair, Philos. Mag. B 71, 179 (1995).

    Google Scholar 

  22. T.J. Konno, R. Sinclair, Mater. Sci. Eng., A A179/A180, 426 (1994).

  23. R. Sinclair, T.J. Konno, Ultramicroscopy 56, 225 (1994).

    Google Scholar 

  24. T.J. Konno, R. Sinclair, Mater. Sci. Forum 204–206, 749 (1996).

  25. T.J. Konno, R. Sinclair, Acta Metall. Mater. 43, 471 (1995).

    Google Scholar 

  26. R. Sinclair, T. Itoh, R. Chin, Microsc. Microanal. 8, 288, (2002).

    Google Scholar 

  27. R. Sinclair, J. Morgiel, A.S. Kirtikar, I.W. Wu, A. Chiang, Ultramicroscopy 51, 41 (1993).

    Google Scholar 

  28. K.H. Min, R. Sinclair, I.S. Park, S.T. Kim, U.I. Chung, Philos. Mag. 85, 2049 (2005).

    Google Scholar 

  29. M.R. Visokay, J.J. Chambers, A.L.P Rotondaro, A. Shanware, L. Colombo, Appl. Phys. Lett 80, 3183 (2002).

    Google Scholar 

  30. J.W. Cahn, J. Chem. Phys. 42, 93 (1965).

    Google Scholar 

  31. T.P. Seward III, D.R. Uhlmann, D. Turnbull, J. Am. Ceram. Soc. 51, 634 (1968).

    Google Scholar 

  32. R. Sinclair, Proc. ICEM XVI, 1322 (2006).

  33. F. Nava, B.Z. Weiss, K.Y. Ahn, D.A. Smith, K.N. Tu, J. Appl. Phys. 64, 354 (1988).

    Google Scholar 

  34. S. Yu, J.P. Lu, F. Mehrad, H. Bu, A. Shanware, M. Ramin, M. Pas, M.R. Visokay, S. Vitale, S.H. Yang, P. Jiang, L. Hall, C. Montgomery, Y. Obeng, C. Bowen, H. Hong, J. Tran, R. Chapman, S. Bushman, C. Machala, J. Blatchford, R. Kraft, L. Colombo, S. Johnson, B. McKee, IEDM Tech. Dig., 221 (2005).

  35. R. Sinclair, R. Chin, A.L. Koh, G. Solorzano, Acta Microsc. 18, 33 (2009).

    Google Scholar 

  36. E.D. Boyes, P.L. Gai, Ultramicroscopy 67, 219 (1997).

    Google Scholar 

  37. P.A. Crozier, R. Wang, R. Sharma, Ultramicroscopy 108, 1432 (2008).

    Google Scholar 

  38. S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, F. Abild-Pedersen, J.K. Nørskov, Nature 427, 426 (2004).

    Google Scholar 

  39. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Nat. Mater. 2, 532 (2003).

    Google Scholar 

  40. M.T. McDowell, I. Ryu, S.W. Lee, C. Wang, W.D. Nix, Y. Cui, Adv. Mater. 24, 6034 (2012).

    Google Scholar 

  41. A.L. Koh, E. Gidcumb, O. Zhou, R. Sinclair, ACS Nano 7, 2566 (2013).

    Google Scholar 

  42. D. Contarato, P. Denes, D. Doering, J. Joseph, B. Krieger, Physics Procedia 37, 1504 (2012).

    Google Scholar 

  43. J.S. Kim, T. LaGrange, B.W. Reed, M.L. Taheri, M.A. Armstrong, W.E. King, N.D. Browning, G.H. Campbell, Science 321, 1472 (2008).

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the Materials Research Society and his nominators for the honor of presenting the Turnbull lecture. The work described has been carried out by a series of graduate research students and some postdoctoral researchers in his group, and none of this would have been possible without their individual and collective hard work, perseverance, and ingenuity. A selection of in situ work has been cited herein, but many others made notable contributions, both directly and indirectly. The author would also like to thank Sang Chul Lee for considerable assistance in assembling this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Sinclair.

Additional information

This article is based on the David Turnbull Lectureship Award given by Robert Sinclair at the 2012 MRS Fall Meeting in Boston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinclair, R. In situ high-resolution transmission electron microscopy of material reactions. MRS Bulletin 38, 1065–1071 (2013). https://doi.org/10.1557/mrs.2013.285

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.285

Navigation