Skip to main content
Log in

Materials in superconducting quantum bits

  • Materials issues for quantum computation
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Superconducting qubits are electronic circuits comprising lithographically defined Josephson tunnel junctions, inductors, capacitors, and interconnects. When cooled to dilution refrigerator temperatures, these circuits behave as quantum mechanical “artificial atoms,” exhibiting quantized states of electronic charge, magnetic flux, or junction phase depending on the design parameters of the constituent circuit elements. Their potential for lithographic scalability, compatibility with microwave control, and operability at nanosecond time scales place superconducting qubits among the leading modalities being considered for quantum information science and technology applications. Over the past decade, the quantum coherence of superconducting qubits has increased more than five orders of magnitude, due primarily to improvements in their design, fabrication, and, importantly, their constituent materials and interfaces. In this article, we review superconducting qubits, articulate the important role of materials research in their development, and provide a prospectus for the future as these devices transition from scientific curiosity to the threshold of technical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J. Clarke, F.K. Wilhelm, Nature 453, 1031 (2008).

    Google Scholar 

  2. M.H. Devoret, in Quantum Fluctuations, Les Houches Session LXIII (Elsevier, 1997), Vol. 1997.

  3. J.Q. You, F. Nori, Nature 474 (7353), 589 (2011).

    Google Scholar 

  4. I. Siddiqi, Supercond. Sci. Technol. 24, 091002 (2011).

    Google Scholar 

  5. M.H. Devoret, R.J. Schoelkopf, Science 339 (6124), 1169 (2013).

    Google Scholar 

  6. W.D. Oliver, in 44th IFF Spring School 2013, Quantum Information Pro-ceessing, D.P. DiVincenzo, Ed. (Forschungszentrum Juelich GmbH, Juelich, 2013).

    Google Scholar 

  7. D.P. DiVincenzo, Science 270, 255 (1995).

    Google Scholar 

  8. Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Nature 398, 786 (1999).

    Google Scholar 

  9. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M.H. Devoret, Science 296, 886 (2002).

    Google Scholar 

  10. G. Burkard, R.H. Koch, D.P. DiVincenzo, Phys. Rev. B 69, 064503 (2004).

    Google Scholar 

  11. P. Bertet, I. Chiorescu, G. Burkard, K. Semba, C.J.P.M. Harmons, D.P. DiVincenzo, J.E. Mooij, Phys. Rev. Lett. 95, 257002 (2005).

    Google Scholar 

  12. G. Ithier, E. Collin, P. Joyez, P.J. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, G. Schon, Phys. Rev. B 95, 134519 (2005).

    Google Scholar 

  13. Y. Yoshihara, K. Harrabi, A.O. Niskanen, Y. Nakamura, J.S. Tsai, Phys. Rev. Lett. 97, 167001 (2006).

    Google Scholar 

  14. J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).

    Google Scholar 

  15. A.A. Houck, J.A. Schreier, B.R. Johnson, J.M. Chos, J. Koch, J.M. Gambetta, D.I. Schuster, L. Frunzio, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. Lett. 101, 080502 (2008).

    Google Scholar 

  16. J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Karrabi, G. Fitch, D.G. Cory, Y. Nakamura, J.S. Tsai, W.D. Oliver, Nat. Phys. 7, 565 (2011).

    Google Scholar 

  17. H. Paik, D.I. Schuster, L.S. Bishop, G. Kirchmair, G. Catelani, A.P. Sears, B.R. Johnson, M.J. Reagor, L. Frunzio, L.I. Glazman, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Phys. Rev. Lett. 107, 240501 (2011).

    Google Scholar 

  18. C. Rigetti, J.M. Gambetta, S. Poletto, B.L.T. Plourde, J.M. Chow, A.D. Corcoles, J.A. Smolin, S.T. Merkel, J.R. Rozen, G.A. Keefe, M.B. Rothwell, M.B. Ketchen, M. Steffen, Phys. Rev. B 86 (10), 100506 (2012).

    Google Scholar 

  19. R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J. Wenner, T.C. White, A.N. Cleland, J.M. Martinis, Phys. Rev. Lett. 111, 080502 (2013).

    Google Scholar 

  20. J.B. Chang, M.R. Vissers, A.D. Corcoles, M. Sandberg, J. Gao, D.W. Abraham, J.M. Chow, J.M. Gambetta, M.R. Rothwell, G.A. Keefe, M. Steffen, D.P. Pappas, Appl. Phys. Lett. 103, 012602 (2013).

    Google Scholar 

  21. M. Steffen, Physics 4, 103 (2011).

    Google Scholar 

  22. A.G. Fowler, A.M. Stephens, P. Groszkowski, Phys. Rev. A 80, 052312 (2009).

    Google Scholar 

  23. D.P. DiVincenzo, Phys. Scr. T. 137, 014020 (2009).

    Google Scholar 

  24. A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland, Phys. Rev. A 86, 032324 (2012).

    Google Scholar 

  25. E. Lucero, M. Hofheinz, M. Ansmann, R.C. Bialczak, N. Katz, M. Neeley, A.D. O’Connell, H. Wang, A.N. Cleland, J.M. Martinis, Phys. Rev. Lett. 100, 224701 (2008).

    Google Scholar 

  26. J.M. Chow, J.M. Gambetta, L. Tornberg, J. Koch, L.S. Bishop, A.A. Houck B.R. Johnson, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. Lett. 102, 119901 (2000).

    Google Scholar 

  27. J.M. Chow, L. DiCarlo, J.M. Gambetta, F. Motzoi, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 82, 040305 (2010).

    Google Scholar 

  28. S. Gustavsson, O. Zwier, J. Bylander, F. Yan, F. Yoshihara, Y. Nakamura T.P. Orlando, W.D. Oliver, Phys. Rev. Lett. 110, 040502 (2013).

    Google Scholar 

  29. S.T. Merkel, J.M. Gambetta, J.A. Smolin, S. Poletto, A.D. Corcoles, B.R. Johnson, C.A. Ryan, M. Steffen, Phys. Rev. A 87, 062119 (2013).

    Google Scholar 

  30. T. Yamamoto, M. Neeley, E. Lucero, R.C. Bialczak, J. Kelly, M. Lenander M. Mariantoni, A.D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, A.N. Cleland, J.M. Martinis, Phys. Rev. B 82, 184515 (2010).

    Google Scholar 

  31. J.M. Chow, J.M. Gambetta, A.D. Corcoles, S.T. Merkel, J.A. Smolin, C. Rigetti, S. Poletto, G.A. Keefe, M.B. Rothwell, J.R. Rozen, M.B. Ketchen, M. Steffen, Phys. Rev. Lett. 109, 060501 (2012).

    Google Scholar 

  32. R. McDermott, IEEE Trans. Appl. Supercond. 19, 2 (2009).

    Google Scholar 

  33. B.D. Josephson, Phys. Lett. 1, 251 (1962).

    Google Scholar 

  34. M. Gurvitch, M.A. Washington, H.A. Huggins, Appl. Phys. Lett. 42, 472 (1983).

    Google Scholar 

  35. C.T. Rogers, R.A. Buhrman, Phys. Rev. Lett. 55, 859 (1985).

    Google Scholar 

  36. R.T. Wakai, D.J. Van Harlingen, Appl. Phys. Lett. 49, 593 (1986).

    Google Scholar 

  37. R.W. Simmonds, K.M. Lang, D.A. Hite, S. Nam, D.P. Pappas, J.M. Martinis Phys. Rev. Lett. 93, 077003 (2004).

    Google Scholar 

  38. K.B. Cooper, M. Steffen, R. McDermott, R.W. Simmonds, S. Oh, D.A. Hite, D.P. Pappas, J.M. Martinis, Phys. Rev. Lett. 93, 180401 (2004).

    Google Scholar 

  39. B.L.T. Plourde, T.L. Robertson, P.A. Reichardt, T. Hime, S. Linzen, C.-E. Wu, J. Clarke, Phys. Rev. B 72, 060506 (2005).

    Google Scholar 

  40. L.-C. Ku, C.C. Yu, Phys. Rev. B 72, 024526 (2005).

    Google Scholar 

  41. I. Martin, L. Bulaevskii, A. Shnirman, Phys. Rev. Lett. 95, 127002 (2005).

    Google Scholar 

  42. C.C. Yu, J. Low Temp. Phys. 137, 251 (2004).

    Google Scholar 

  43. J.M. Martinis, K.B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K.D. Osborn, K. Cicak, S. Oh, D.P. Pappas, R.W. Simmonds, C.C. Yu, Phys. Rev. Lett. 95, 210503 (2005).

    Google Scholar 

  44. D.J. Van Harlingen, T.L. Robertson, B.L.T. Plourde, P.A. Reichardt, T.A. Crane, J. Clarke, Phys. Rev. B 70, 064517 (2004).

    Google Scholar 

  45. S. Oh, K. Cicak, J.S. Kline, M.A. Sillanpaa, K.D. Osborn, J.D. Whittaker, R.W. Simmonds, D.P. Pappas, Phys. Rev. B 74, 100502 (2006).

    Google Scholar 

  46. P.B. Welander, J. Appl. Phys. 108, 103508 (2010).

    Google Scholar 

  47. P.B. Welander, T.J. McArdle, J.N. Eckstein, Appl. Phys. Lett. 97, 233510 (2010).

    Google Scholar 

  48. S. Oh, D.A. Hite, K. Cicak, K.D. Osborn, R.W. Simmonds, R. McDermott, K.B. Cooper, M. Steffen, J.M. Martinis, D.P. Pappas, Thin Solid Films 496, 389 (2006).

    Google Scholar 

  49. M.J.A. Stoutimore, M.S. Khalil, C.J. Lobb, K.D. Osborn, Appl. Phys. Lett. 101, 062602 (2012).

    Google Scholar 

  50. M.V. Schickfus, S. Hunklinger, Phys. Lett. A 64, 144 (1977).

    Google Scholar 

  51. A.D. O’Connell, M. Ansmann, R.C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, C. McKenney, M. Neeley, H. Wang, E.M. Weig, A.N. Cleland, J.M. Martinis, Appl. Phys. Lett. 92, 112903 (2008).

    Google Scholar 

  52. J. Gao, J. Zmuidzinas, B.A. Mazin, H.G. LeDuc, P.K. Day, Appl. Phys. Lett. 90, 102507 (2007).

    Google Scholar 

  53. J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B.A. Mazin, P.K. Day, H.G. Leduc, Appl. Phys. Lett. 92, 152505 (2008).

    Google Scholar 

  54. H. Wang, M. Hofheinz, J. Wenner, M. Ansmann, R.C. Bialczak, M. Lenander E. Lucero, M. Neeley, A.D. O’Connell, D. Sank, M. Weides, A.N. Cleland, J.M. Martinis, Appl. Phys. Lett. 95, 233508 (2009).

    Google Scholar 

  55. T. Lindstrom, J.E. Healey, M.S. Colclough, C.M. Muirhead, A.Y. Tzalenchuk, Phys. Rev. B 80, 132501 (2009).

    Google Scholar 

  56. P. Macha, S.H.W. van der Ploeg, G. Oelsner, E. Il’ichev, H.-G. Meyer, S. Wunsch, M. Siegel, Appl. Phys. Lett. 96, 062503 (2010).

    Google Scholar 

  57. D.S. Wisbey, J. Gao, M.R. Vissers, F.C.S. da Silva, J.S. Kline, L. Vale, D.P. Pappas, J. Appl. Phys. 108, 093918 (2010).

    Google Scholar 

  58. J.M. Sage, V. Bolkhovsky, W.D. Oliver, B. Turek, P.B. Welander, J. Appl. Phys. 109, 063915 (2011).

    Google Scholar 

  59. M.S. Khalil, F.C. Wellstood, K.D. Osborn, IEEE Trans. Appl. Supercond. 21, 879 (2011).

    Google Scholar 

  60. R. Barends, H.L. Hortensius, T. Zijlstra, J.J.A. Baselmans, S.J.C. Yates, J.R. Gao, T.M. Klapwijk, Appl. Phys. Lett 92, 223502 (2008).

    Google Scholar 

  61. H.G. Leduc, B. Bumble, P.K. Day, B.H. Eom, J. Gao, S. Golwala, B.A. Mazin, S. McHugh, A. Merrill, D.C. Moore, O. Noroozian, A.D. Turner, J. Zmuidzinas, Appl. Phys. Lett. 97, 102509 (2010).

    Google Scholar 

  62. M.R. Vissers, J. Gao, D.S. Wisbey, D.A. Hite, C.C. Tsuei, A.D. Corcoles M. Steffen, D.P. Pappas, Appl. Phys. Lett. 97, 232509 (2010).

    Google Scholar 

  63. N.C. Saha, H.G. Tompkins, J. Appl. Phys. 72, 3072 (1992).

    Google Scholar 

  64. M. Sandberg, M.R. Vissers, J.S. Kline, M. Weides, J. Gao, D.S. Wisbey, D.P. Pappas, Appl. Phys. Lett. 100, 262605 (2012).

    Google Scholar 

  65. A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P.J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, J.C. White, Y. Y. i n J. Zhao, C.J. Palmstrom, J.M. Martinis, A.N. Cleland, Appl. Phys. Lett. 100, 113510 (2012).

    Google Scholar 

  66. F.C. Wellstood, C. Urbina, J. Clarke, Appl. Phys. Lett. 50, 772 (1987).

    Google Scholar 

  67. K. Kakuyanagi, T. Meno, S. Saito, H. Nakano, K. Semba, H. Takayanagi, F. Deppe, A. Shnirman, Phys. Rev. Lett. 98, 047004 (2007).

    Google Scholar 

  68. R.C. Bialczak, R. McDermott, M. Ansmann, M. Hofheinz, N. Katz, E. Lucero, M. Neeley, A.D. O’Connell, H. Wang, A.N. Cleland, J.M. Martinis, Phys. Rev. Lett. 99, 187006 (2007).

    Google Scholar 

  69. S. Sendelbach, D. Hover, A. Kittel, M. Muck, J.M. Martinis, R. McDermott, Phys. Rev. Lett. 100, 227006 (2008).

    Google Scholar 

  70. H. Bluhm, J.A. Bert, N.C. Koshnick, M.E. Huber, K.A. Moler, Phys. Rev. Lett. 103, 026805 (2009).

    Google Scholar 

  71. S. Sendelbach, D. Hover, M. Muck, R. McDermott, Phys. Rev. Lett. 103, 117001 (2009).

    Google Scholar 

  72. S.M. Anton, J.S. Birenbaum, S.R. O’Kelley, V. Bolkhovsky, D.A. Braje, G. Fitch, M. Neeley, G.C. Hilton, H.-M. Cho, K.D. Irwin, F.C. Wellstood, W.D. Oliver, A. Shnirman, J. Clarke, Phys. Rev. Lett. 110, 147002 (2013).

    Google Scholar 

  73. R.H. Koch, D.P. DiVincenzo, J. Clarke, Phys. Rev. Lett. 98, 267003 (2007).

    Google Scholar 

  74. S. Choi, D.-H. Lee, S.G. Louie, J. Clarke, Phys. Rev. Lett. 103, 197001 (2009).

    Google Scholar 

  75. S.G. Louie, M.L. Cohen, Phys. Rev. B13, 2461 (1976).

    Google Scholar 

  76. L. Faoro, L.B. Ioffe, Phys. Rev. Lett. 100, 227005 (2008).

    Google Scholar 

  77. L. Faoro, L. Ioffe, A. Kitaev, Phys. Rev. B 86, 134414 (2012).

    Google Scholar 

  78. J. Wu, C.C. Yu, Phys. Rev. Lett. 108, 247001 (2012).

    Google Scholar 

  79. J.P. Pekola, D.V. Anghel, T.I. Suppula, J.K. Suoknuuti, A.J. Manninen M. Manninen, Appl. Phys. Lett. 76, 2782 (2000).

    Google Scholar 

  80. K.M. Lang, S. Nam, J. Aumentado, C. Urbina, J.M. Martinis, IEEE Trans. Appl. Supercond. 13, 989 (2003).

    Google Scholar 

  81. G. Catelani, S.E. Nigg, S.M.Girvin, R.J. Schoelkopf, L.I. Glazman, Phys. Rev. B 86, 184514 (2012).

    Google Scholar 

  82. D. Riste, C.C. Cultink, M.J. Tiggelman, R.N. Schouten, K.W. Lehnert, L. DiCarlo, Nature Comm. 4, 1913 (2013).

    Google Scholar 

  83. I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Science 299, 1869 (2003).

    Google Scholar 

  84. V.E. Manucharyan, J. Koch, L. Glazman, M.H. Devoret, Science 326, 113 (2009).

    Google Scholar 

  85. A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol’tsman, B. Voronov, Appl. Phys. Lett. 88, 111116 (2006).

    Google Scholar 

  86. T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Myazaki, W.D. Oliver Y. Nakamura, J.S. Tsai, Appl. Phys. Lett. 93, 042510 (2008).

    Google Scholar 

  87. Z. Kim, B. Suri, V. Zaretskey, S. Novikov, K.D. Osborn, A. Mizel, F.C. Wellstood, B.S. Palmer, Phys. Rev. Lett. 106, 120501 (2011).

    Google Scholar 

  88. J. Wenner, R. Barends, R.C. Bialczak, Y. Chen, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant, P.J.J. O’Malley, D. Sank, A. Vainsencher, H. Wang T.C. White, Y. Yin, J. Zhao, A.N. Cleland, J.M. Martinis, App. Phys. Lett. 99, 113513 (2011).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge their colleagues at MIT Lincoln Laboratory, MIT campus, NEC, and the University of Tokyo, with whom they have had numerous fruitful discussions and collaborations related to the topics presented in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Oliver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, W.D., Welander, P.B. Materials in superconducting quantum bits. MRS Bulletin 38, 816–825 (2013). https://doi.org/10.1557/mrs.2013.229

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.229

Navigation