Skip to main content
Log in

Quantum photonic networks in diamond

  • Nitrogen-vacancy centers: Physics and applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has emerged as a powerful interface between optical elements such as optical fibers and lenses, and solid-state quantum objects such as luminescent color centers in diamond that can be used effectively to manipulate quantum information. While quantum science and technology has been the main driving force behind recent interest in diamond nanophotonics, such a platform would have many applications that go well beyond the quantum realm. For example, diamond’s transparency over a wide wavelength range, large third-order nonlinearity, and excellent thermal properties are of great interest for the implementation of frequency combs and integrated Raman lasers. Diamond is also an inert material that makes it well suited for biological applications and for devices that must operate in harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D.J. Twitchen, A.J. Whitehead, S.E. Coe, G.A. Scarsbrook, Science 297, 1670 (2002).

    Google Scholar 

  2. J.-P.M. Feve, K.E. Shortoff, M.J. Bohn, J.K. Brasseur, Opt. Exp. 19, 913 (2011).

    Google Scholar 

  3. A.M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer-Verlag, Germany, 2001).

    Google Scholar 

  4. P.C. Maurer, G. Kucsko, C. Latta, L. Jiang, N.Y. Yao, S.D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D.J. Twitchen, J.I. Cirac, M.D. Lukin, Science 336, 1283 (2012).

    Google Scholar 

  5. M.V.G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, M.D. Lukin, Science 316, 1312 (2007).

    Google Scholar 

  6. L. Jiang, J.S. Hodges, J.R. Maze, P. Maurer, J.M. Taylor, D.G. Cory, P.R. Hemmer, R.L. Walsworth, A. Yacoby, A.S. Zibrov, M.D. Lukin, Science 326 267 (2009).

    Google Scholar 

  7. T. van der Sar, Z.H. Wang, M.S. Blok, H. Bernien, T.H. Taminiau, D.M. Toyli D.A. Lidar, D.Awschalom, R. Hanson, V.V. Dobrovitski, Nature 484, 82 (2012).

    Google Scholar 

  8. E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sørensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Nature 466, 730 (2010).

    Google Scholar 

  9. E.M. Purcell, Phys. Rev. 69, 681 (1946).

    Google Scholar 

  10. G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin Nature 455, 648 (2008).

    Google Scholar 

  11. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V. Gurudev Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth M.D. Lukin, Nature 455, 644 (2008).

    Google Scholar 

  12. L. Robledo, L. Childress, H. Bernien, B. Hensen, P.F.A. Alkemade, R. Hanson Nature 477, 574 (2011).

    Google Scholar 

  13. H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, R. Hanson Phys. Rev. Lett. 108, 043604 (2012).

    Google Scholar 

  14. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup, Science 320, 1326 (2008).

    Google Scholar 

  15. Y.-S. Park, A.K. Cook, H. Wang, Nano Lett. 6, 2075 (2006).

    Google Scholar 

  16. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, M.D. Lukin, Nano Lett.10, 3922 (2010).

    Google Scholar 

  17. T. van der Sar, J. Hagemeier, W. Pfaff, E.C. Heeres, S.M. Thon, H. Kim, P.M. Petroff, T.H. Oosterkamp, D. Bouwmeester, R. Hanson, App. Phys. Lett. 98, 193103 (2011).

    Google Scholar 

  18. P.E. Barclay, K.-M. Fu, C. Santori, R.G. Beausoleil, Opt. Express 17, 9588 (2009).

    Google Scholar 

  19. P.E. Barclay, K.-M.C. Fu, C. Santori, R.G. Beausoleil, Appl. Phys. Lett. 95, 191115 (2009).

    Google Scholar 

  20. P.E. Barclay, C. Santori, K.-M. Fu, R.G. Beausoleil, O. Painter, Opt. Express 17, 8081 (2009).

    Google Scholar 

  21. S. Schietinger, M. Barth, T. Aichele, O. Benson, Nano Lett. 9, 1694 (2009).

    Google Scholar 

  22. B. Hausmann, M. Khan, Y. Zhang, T.M. Babinec, K. Martinick, M. McCutcheon P.R. Hemmer, M. Loncar, Diam. Relat. Mater. 19, 621 (2010).

    Google Scholar 

  23. T. Babinec, B.M. Hausmann, M. Khan, Y. Zhang, J. Maze, P.R. Hemmer, M. Loncar, Nature Nanotech. 5,195 (2010).

    Google Scholar 

  24. P. Maletinsky, S. Hong, M.S. Grinolds, B. Hausmann, M.D. Lukin, R.L. Walsworth, M. Loncar, A. Yacoby, Nature Nanotechnol. 7, 320 (2012).

    Google Scholar 

  25. P. Siyushev, F. Kaiser, V.Jacques, I. Gerhardt, S. Bischof, H. Fedder, J. Dodson, M. Markham, D. Twitchen, F. Jelezko, J. Wrachtrup, Appl. Phys. Lett. 97, 241902 (2010).

    Google Scholar 

  26. J.P. Hadden, J.P. Harrison, A.C. Stanley-Clarke, L. Marseglia, Y.-L.D. Ho, B.R. Patton, J.L. O’Brien, J.G. Rarity, Appl. Phys. Lett. 97, 241901 (2010).

    Google Scholar 

  27. K.J. Vahala, Nature 424, 839 (2003).

    Google Scholar 

  28. I. Bulu, T. Babinec, B. Hausmann, J.T. Choy, M. Loncar, Opt. Express 19, 5268 (2011).

    Google Scholar 

  29. J.T. Choy, B.J.M. Hausmann, T.M. Babinec, I. Bulu, M. Khan, P. Maletinsky A. Yacoby, M. Loncar, Nat. Photon. 5, 738 (2011).

    Google Scholar 

  30. I. Aharonovich, A.D. Greentree, S. Prawer, Nature Photon. 5, 397 (2011).

    Google Scholar 

  31. A.P. Magyar, J.C. Lee, A.M. Limarga, I. Aharonovich, F. Rol, D.R. Clarke M. Huang, E.L. Hu, Appl. Phys. Lett. 99, 081913 (2011).

    Google Scholar 

  32. I. Bayn, B. Meyler, A. Lahav, J. Salzman, R. Kalish, B.A. Fairchild, S. Prawer M. Barth, O. Benson, T. Wolf, P. Siyushev, F. Jelezko, J. Wrachtrup, Diam. Relat. Mater. 20, 937 (2011).

    Google Scholar 

  33. S. Gsell, T. Bauer, J. Goldfuss, M. Shreck, B. Strizker, Appl. Phys. Lett. 84, 4541 (2004).

    Google Scholar 

  34. J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, C. Becher, Nature Nanotech. 7, 69 (2012).

    Google Scholar 

  35. T. Babinec, J.T. Choy, K. Smith, M. Khan, M. Loncar, J. Vac. Sci. Technol. B 29, 010601 (2011).

    Google Scholar 

  36. I. Bayn, B. Meyler, J. Salzman, R. Kalish, New J. Phys. 13, 025018 (2011).

    Google Scholar 

  37. A. Faraon, P.E. Barclay, C. Santori, K.-M.C. Fu, R.G. Beausoleil, Nature Photon. 5, 301 (2011).

    Google Scholar 

  38. A. Faraon, C. Santori, Z. Huang, V.M. Acosta, R.G. Beausoleil, Phys. Rev. Lett. 109, 033604 (2012).

    Google Scholar 

  39. B.M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J.T. Choy T.M. Babinec, A. Kubanek, A. Yacoby, M.D. Lukin, M. Loncar, Nano Lett. 12, 1578 (2012).

    Google Scholar 

  40. M.J. Burek, N.P. de Leon, B.J. Shields, B.J. Hausmann, Y. Chu, Q. Quan A.S. Zibrov, H. Park, M.D. Lukin, M. Loncar, Nano Lett.12, 6084 (2012).

    Google Scholar 

Download references

Acknowledgements

The authors thank Daniel Twitchen and Matthew Markham from Element Six for support with diamond samples. M.L. acknowledges collaboration with Misha Lukin, Phil Hemmer, Ron Walsworth, Amir Yacoby, Hongkun Park, Joerg Wrachtrup, and Fedor Jelezko, as well as their research groups. M.L. would especially like to thank his students and postdocs who performed much of the work discussed here and, in particular, Birgit Hausmann, Jen Choy, Tom Babinec, Irfan Bulu, and Mike Burek. The work is supported by grants from DARPA (QuEST and QuASAR programs), NSF (NSEC and NIRT awards), AFOSR MURI (grant FA9550–09–1-0669-DOD35CAP), KAUST (FIC/2010/02), and Harvard Quantum Optics Center. M.L. also acknowledges support from the Sloan Foundation. A.F. would like to thank the members of the Integrated Infrastructure Laboratory at HP Labs involved in the diamond work: Raymond G. Beausoleil, Charles Santori, Zhihong Huang, Victor M. Acosta, Kai-Mei C. Fu, and Paul E. Barclay. The work at HP Labs was supported by DARPA (award no. HR0011–09–1-0006) and the Regents of the University of California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Lončar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lončar, M., Faraon, A. Quantum photonic networks in diamond. MRS Bulletin 38, 144–148 (2013). https://doi.org/10.1557/mrs.2013.19

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.19

Navigation