Skip to main content
Log in

Single-crystal growth of organic semiconductors

  • Organic single crystals
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Organic single crystals are an established part of the emerging field of organic optoelectronics, because they provide an ideal platform for the studies of the intrinsic physical properties of organic semiconductors. As organic crystals have low melting temperatures and high vapor pressures and are soluble in numerous organic solvents, both solution and gas-phase methods can be used for crystal growth. The nature of the individual molecules and the interactions between molecules determine which growth method is preferred for particular materials. Organic semiconductors with very low decomposition or melting temperatures can be grown from solutions, whereas semiconductors with high vapor pressures can be grown using physical vapor transport methods. High-quality crystals can be obtained using both methods. Crystal growth and crystal engineering of multicomponent organic compounds are emerging fields that can provide a variety of new materials with different physical properties. The growth of large crystals from the melt by zone melting, the Bridgman, or the Czochralski methods has been used to produce stable materials used in wafer manufacturing or large scintillator detectors. In this article, single-crystal growth methods for organic semiconductors are discussed with the aim of preparing high-quality specimens for determination of the basic properties of organic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 112, 2208 (2012).

    Article  CAS  Google Scholar 

  2. T. Ishiguro, K. Yamaji, G. Saito, Organic Superconductors, 2 nd ed. (Springer-Verlag, Berlin, Heidelberg, Germany, 1998).

    Book  Google Scholar 

  3. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).

    Article  CAS  Google Scholar 

  4. A.P. Kulkarni, C.J. Tonzola, A. Babel, S.A. Jenekhe, Chem. Mater. 16, 4556 (2004).

    Article  CAS  Google Scholar 

  5. H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004).

    Article  CAS  Google Scholar 

  6. G. Horowitz, M.E. Hajlaoui, Adv. Mater. 12, 1046 (2000).

    Article  CAS  Google Scholar 

  7. W.L. Kalb, F. Meier, K. Mattenberger, B. Batlogg, Phys. Rev. B 76, 184112 (2007).

    Article  Google Scholar 

  8. B.D. Chapman, A. Checco, R. Pindak, T. Siegrist, C. Kloc, J. Cryst. Growth 290, 479 (2006).

    Article  CAS  Google Scholar 

  9. D.B.A. Rep, A.F. Morpurgo, W.G. Sloof, T.M. Klapwijk, J. Appl. Phys. 93, 2082 (2003).

    Article  CAS  Google Scholar 

  10. R.W.I. de Boer, M.E. Gershenson, A.F. Morpurgo, V. Podzorov, Phys. Stat. Sol. (a) 201, 1302 (2004).

    Article  Google Scholar 

  11. M.E. Gershenson, V. Podzorov, A.F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).

    Article  CAS  Google Scholar 

  12. L. Jiang, H. Dong, W. Hu, J. Mater. Chem. 20, 4994 (2010).

    Article  CAS  Google Scholar 

  13. R. Li, W. Hu, Y. Liu, D. Zhu, Acc. Chem. Res. 43, 529 (2010).

    Article  CAS  Google Scholar 

  14. X. Yang, L. Wang, C. Wang, W. Long, Z. Shuai, Chem. Mater. 20, 3205 (2008).

    Article  CAS  Google Scholar 

  15. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J.A. Rogers, M.E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004).

    Article  CAS  Google Scholar 

  16. V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, J.A. Rogers, Science 303, 1644 (2004).

    Article  CAS  Google Scholar 

  17. H. Najafov, B. Lee, Q. Zhou, L.C. Feldman, V. Podzorov, Nat. Mater. 9, 938 (2010).

    Article  CAS  Google Scholar 

  18. H. Jiang, X. Yang, Z. Cui, Y. Liu, H. Li, W. Hu, Appl. Phys. Lett. 94, 123308 (2009).

    Article  Google Scholar 

  19. K. Hannewald, P.A. Bobbert, Phys. Rev. B 69, 075212 (2004).

    Article  Google Scholar 

  20. F. Ortmann, F. Bechstedt, K. Hannewald, Phys. Status Solidi (b) 248, 511 (2011).

    Article  CAS  Google Scholar 

  21. L. Jiang, W. Hu, Z. Wei, W. Xu, H. Meng, Adv. Mater. 21, 3649 (2009).

    Article  CAS  Google Scholar 

  22. Q. Tang, Y. Tong, W. Hu, Q. Wan, T. Bjørnholm, Adv. Mater. 21, 4234 (2009).

    Article  CAS  Google Scholar 

  23. H. Jiang, H. Zhao, K.K. Zhang, X. Chen, C. Kloc, W. Hu, Adv. Mater. 23, 5075 (2011).

    Article  CAS  Google Scholar 

  24. A.L. Briseno, S.C.B. Mannsfeld, M.M. Ling, S. Liu, R.J. Tseng, C. Reese, M.E. Roberts, Y. Yang, F. Wudl, Z. Bao, Nature 444, 913 (2006).

    Article  CAS  Google Scholar 

  25. T. Yamao, T. Miki, H. Akagami, Y. Nishimoto, S. Ota, S. Hotta, Chem. Mater. 19, 3748 (2007).

    Article  CAS  Google Scholar 

  26. L. Jiang, Y. Fu, H. Li, W. Hu, J. Am. Chem. Soc. 130, 3937 (2008).

    Article  CAS  Google Scholar 

  27. L. Jiang, H. Dong, Q. Meng, H. Li, M. He, Z. Wei, Y. He, W. Hu, Adv. Mater. 23, 2059 (2011).

    Article  CAS  Google Scholar 

  28. H. Jiang, X. Yang, E. Wang, Y. Fu, Y. Liu, H. Li, Z. Cui, Y. Liu, W. Hu, Synth. Met. 161, 136 (2011).

    Article  CAS  Google Scholar 

  29. M. Mas-Torrent, M. Durkut, P. Hadley, X. Ribas, C. Rovira, J. Am. Chem. Soc. 126, 984 (2004).

    Article  CAS  Google Scholar 

  30. H. Jiang, X. Yang, Z. Cui, Y. Liu, H. Li, W. Hu, Y. Liu, D. Zhu, Appl. Phys. Lett. 91, 123505 (2007).

    Article  Google Scholar 

  31. R. Pfattner, M. Mas-Torrent, I. Bilotti, A. Brillante, S. Milita, F. Liscio, F. Biscarini, T. Marszalek, J. Ulanski, A. Nosal, M. Gazicki-Lipman, M. Leufgen, G. Schmidt, L.W. Molenkamp, V. Laukhin, J. Veciana, C. Rovira, Adv. Mater. 22, 4198 (2010).

    Article  CAS  Google Scholar 

  32. H. Jiang, K.K. Zhang, Y. Ye, F. Wei, P. Hu, J. Guo, C. Liang, X. Chen, Y. Zhao, L.E. McNeil, W. Hu, C. Kloc, Small 8 (2012); doi 10.1002/smll.201202390.

  33. D.H. Kim, J.T. Han, Y.D. Park, Y. Jang, J.H. Cho, M. Hwang, K. Cho, Adv. Mater. 18, 719 (2006).

    Article  CAS  Google Scholar 

  34. T. Matsukawa, M. Yoshimura, K. Sasai, M. Uchiyama, M. Yamagishi, Y. Tominari, Y. Takahashi, J. Takeya, Y. Kitaoka, Y. Mori, T. Sasaki, J. Cryst. Growth 312, 310 (2010).

    Article  CAS  Google Scholar 

  35. I. Johannsen, L. Groth-Andersen, K.F. Nielsen, J. Cryst. Growth 51, 627 (1981).

    Article  CAS  Google Scholar 

  36. D.H. Kim, D.Y. Lee, H.S. Lee, W.H. Lee, Y.H. Kim, J.I. Han, K. Cho, Adv. Mater. 19, 678 (2007).

    Article  CAS  Google Scholar 

  37. T. Miyahara, M. Shimizu, J. Cryst. Growth 226, 130 (2001).

    Article  CAS  Google Scholar 

  38. C.N. Field, P.A. Hamley, J.M. Webster, D.H. Gregory, J.J. Titman, M. Poliakoff, J. Am. Chem. Soc. 122, 2480 (2000).

    Article  CAS  Google Scholar 

  39. W.W. Piper, S.J. Polich, Appl. Phys. Lett. 32, 1278 (1961).

    CAS  Google Scholar 

  40. C. Kloc, P.G. Simpkins, T. Siegrist, R.A. Laudise, J. Cryst. Growth 182, 416 (1997).

    Article  CAS  Google Scholar 

  41. R.A. Laudise, C. Kloc, P.G. Simpkins, T. Siegrist, J. Cryst. Growth 187, 449 (1998).

    Article  CAS  Google Scholar 

  42. D. Käfer, G. Witte, Phys. Chem. Chem. Phys. 7, 2850 (2005).

    Article  Google Scholar 

  43. S.-W. Park, J.M. Hwang, J.-M. Choi, D.K. Hwang, M.S. Oh, J.H. Kim, S. Im, Appl. Phys. Lett. 90, 153512 (2007).

    Article  Google Scholar 

  44. V. Podzorov, S.E. Sysoev, E. Loginova, V.M. Pudalov, M.E. Gershenson, Appl. Phys. Lett. 83, 3504 (2003).

    Article  CAS  Google Scholar 

  45. H. Jiang, K.J. Tan, K.K. Zhang, X. Chen, C. Kloc, J. Mater. Chem. 21, 4771 (2011).

    Article  CAS  Google Scholar 

  46. Q. Tang, L. Jiang, Y. Tong, H. Li, Y. Liu, Z. Wang, W. Hu, Y. Liu, D. Zhu, Adv. Mater. 20, 2947 (2008).

    Article  CAS  Google Scholar 

  47. G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley, eds., Springer Handbook of Crystal Growth, 1 st ed. (Springer-Verlag, Berlin Heidelberg, Germany, 2010).

    Book  Google Scholar 

  48. R.S. Feigelson, R.K. Route, T.-M. Kao, J. Cryst. Growth 72, 585 (1985).

    Article  CAS  Google Scholar 

  49. S. Selvakumar, K. Sivaji, A. Arulchakkaravarthi, N. Balamurugan, S. Sankar, P. Ramasamy, J. Cryst. Growth 282, 370 (2005).

    Article  CAS  Google Scholar 

  50. K.H. Probst, N. Karl, Phys. Status Solidi (a) 27, 499 (1975).

    Article  CAS  Google Scholar 

  51. B.J. McArdle, J.N. Sherwood, A.C. Damask, J. Cryst. Growth 22, 193 (1974).

    Article  CAS  Google Scholar 

  52. H. Inokuchi, Bull. Chem. Soc. Jpn. 29, 131 (1956).

    Article  CAS  Google Scholar 

  53. J. Niemax, J. Pflaum, Appl. Phys. Lett. 87, 241921 (2005).

    Article  Google Scholar 

  54. A. Arulchakkaravarthi, P. Santhanaraghavan, P. Ramasamy, J. Cryst. Growth 224, 89 (2001).

    Article  CAS  Google Scholar 

  55. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 305 (1925).

    Article  Google Scholar 

  56. M. Brissaud, C. Dolin, J. Leduigou, B.S. McArdle, J.N. Sherwood, J. Cryst. Growth 38, 134 (1977).

    Article  CAS  Google Scholar 

  57. A.K. Tripathi, M. Heinrich, T. Siegrist, J. Pflaum, Adv. Mater. 19, 2097 (2007).

    Article  CAS  Google Scholar 

  58. N. Karl, Crystals Growth, Properties, and Applications, 1 st ed. (Springer-Verlag, Berlin, Heidelberg, Germany, 1980).

    Google Scholar 

  59. I.H. Hong, K.J. Tan, M. Toh, H. Jiang, K. Zhang, C. Kloc, J. Cryst. Growth (2012); doi 10.1016/j.jcrysgro.2012.10.002.

  60. J. Bleay, R.M. Hooper, R.S. Narang, J.N. Sherwood, J. Cryst. Growth 43, 589 (1978).

    Article  CAS  Google Scholar 

  61. M. Arivanandhan, K. Sankaranarayanan, C. Sanjeeviraja, A. Arulchakkaravarthi, P. Ramasamy, J. Cryst. Growth 281, 596 (2005).

    Article  CAS  Google Scholar 

  62. I.J. Tickle, C.K. Prout, J. Chem. Soc. 6, 720 (1973).

    Google Scholar 

  63. K.D. Truong, A.D. Bandrauk, Chem. Phys. Lett. 44, 232 (1976).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Nanyang Technological University (NTU-BGU-HU NRF CREATE program, Nanomaterials for Energy and Water Management, M59070000). The authors thank Dr. Te Ba (Nanyang Technological University) for his critical discussion of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Kloc, C. Single-crystal growth of organic semiconductors. MRS Bulletin 38, 28–33 (2013). https://doi.org/10.1557/mrs.2012.308

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.308

Navigation