Skip to main content
Log in

Fluorescence loss of commercial aqueous quantum dots during preparation for bioimaging

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) are increasingly employed in biologic imaging applications; however, anecdotal reports suggest difficulties in QD bioconjugation. Further, the stability of commercial QDs during bioconjugation has not been systematically evaluated. Thus, we examined fluorescence losses resulting from aggregation and declining photoluminescence quantum yield (QY) for commercial CdSe/ZnS QD products from four different vendors. QDs were most stable in the aqueous media in which they were supplied. The largest QY declines were observed during centrifugal filtration, whereas the largest declines in colloidal stability occurred in 2-(N-morpholino)ethanesulfonic acid (MES) buffer. These results enable optimization of bioconjugation protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table I
Figure 3

Similar content being viewed by others

References

  1. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013 (1998).

    Article  CAS  Google Scholar 

  2. W.C. Chan and S. Nie: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016 (1998).

    Article  CAS  Google Scholar 

  3. W.G. van Sark, P.L.T.M. Frederix, A.A. Bol, H.C. Gerritsen, and A. Meijerink: Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. ChemPhysChem 3, 871 (2002).

    Article  Google Scholar 

  4. X.Y. Wu, H.J. Liu, J.Q. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N.F. Ge, F. Peale, and M.P. Bruchez: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41 (2003).

    Article  CAS  Google Scholar 

  5. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, and A. Libchaber: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759 (2002).

    Article  CAS  Google Scholar 

  6. A. Shiohara, A. Hoshino, K. Hanaki, K. Suzuki, and K. Yamamoto: On the cyto-toxicity caused by quantum dots. Microbiol. Immunol. 48, 669 (2004).

    Article  CAS  Google Scholar 

  7. M.P. Waalkes: Cadmium carcinogenesis. Mutat. Res. 533, 107 (2003).

    Article  CAS  Google Scholar 

  8. L. Ye, K.-T. Yong, L. Liu, I. Roy, R. Hu, J. Zhu, H. Cai, W.-C. Law, J. Liu, K. Wang, J. Liu, Y. Liu, Y. Hu, X. Zhang, M.T. Swihart, and P.N. Prasad: A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nano 7, 453 (2012).

    Article  CAS  Google Scholar 

  9. J.Q. Grim, L. Manna, and I. Moreels: A sustainable future for photonic colloidal nanocrystals. Chem. Soc. Rev. 44, 5897 (2015).

    Article  CAS  Google Scholar 

  10. N. Pradhan and X.G. Peng: Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: Control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc. 129, 3339 (2007).

    Article  CAS  Google Scholar 

  11. A. Banerjee, C. Grazon, B. Nadal, T. Pons, Y. Krishnan, and B. Dubertret: Fast, efficient, and stable conjugation of multiple DNA strands on Colloidal Quantum Dots. Bioconjug. Chem. 26, 1582 (2015).

    Article  CAS  Google Scholar 

  12. J. Aldana, Y.A. Wang, and X. Peng: Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844 (2001).

    Article  CAS  Google Scholar 

  13. Y. Zhang, Y.S. Chen, P. Westerhoff, and J.C. Crittenden: Stability and removal of water soluble CdTe quantum dots in water. Environ. Sci. Technol. 42, 321 (2008).

    Article  CAS  Google Scholar 

  14. N.C. Anderson, M.P. Hendricks, J.J. Choi, and J.S. Owen: Ligand exchange and the stoichiometry of metal Chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536 (2013).

    Article  CAS  Google Scholar 

  15. I.L. Medintz, H.T. Uyeda, E.R. Goldman, and H. Mattoussi: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435 (2005).

    Article  CAS  Google Scholar 

  16. G.T. Hermanson: Bioconjugate Techniques (Academic Press, Amsterdam, 2013).

    Google Scholar 

  17. G.T. Hermanson: Bioconjugate Techniques (Academic Press, San Diego, 1996).

    Google Scholar 

  18. R.F. Kubin and A.N. Fletcher: Fluorescence quantum yields of some rhodamine dyes. J. Lumin. 27, 455 (1982).

    Article  Google Scholar 

  19. R.A. Velapoldi: Considerations on organic compounds in solution and inorganic ions in glasses as fluorescent standard reference materials. National Bureau of Standards Special Publication 378, 231 (1973).

    Google Scholar 

  20. Y. Wu, S.K. Campos, G.P. Lopez, M.A. Ozbun, L.A. Sklar, and T. Buranda: The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy. Anal. Biochem. 364, 180 (2007).

    Article  CAS  Google Scholar 

  21. A.K. Gaigalas and L. Wang: Measurement of the fluorescence Quantum Yield using a spectrometer with an Integrating Sphere Detector. J. Res. Natl. Inst. Stand. Technol. 113, 17 (2008).

    Article  CAS  Google Scholar 

  22. J.D. Thomas: The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol. Pathol. 36, 112 (2008).

    Article  Google Scholar 

  23. J.O. Winter, T.Y. Liu, B.A. Korgel, and C.E. Schmidt: Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv. Mater. 13, 1673 (2001).

    Article  CAS  Google Scholar 

  24. C. Pfeiffer, C. Rehbock, D. Hühn, C. Carrillo-Carrion, D.J. de Aberasturi, V. Merk, S. Barcikowski, and W.J. Parak: Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J. Royal Soc. Interface 11, 20130931 (2014).

    Article  Google Scholar 

  25. T.L. Moore, L. Rodriguez-Lorenzo, V. Hirsch, S. Balog, D. Urban, C. Jud, B. Rothen-Rutishauser, M. Lattuada, and A. Petri-Fink: Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. Chem. Soc. Rev. 44, 6287 (2015).

    Article  CAS  Google Scholar 

  26. A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  27. F. Wang, R. Tang, and W.E. Buhro: The trouble with TOPO; identification of adventitious impurities beneficial to the growth of Cadmium Selenide quantum dots, rods, and wires. Nano Lett. 8, 3521 (2008).

    Article  CAS  Google Scholar 

  28. W.G.J.H.M. van Sark, P.L.T.M. Frederix, D.J. Van den Heuvel, H.C. Gerritsen, A.A. Bol, J.N.J. van Lingen, C. de Mello Donegá, and A. Meijerink: Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J. Phys. Chem. B 105, 8281 (2001).

    Article  Google Scholar 

  29. J. RodriguezViejo, K.F. Jensen, H. Mattoussi, J. Michel, B.O. Dabbousi, and M.G. Bawendi: Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites. Appl. Phys. Lett. 70, 2132 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge support from the National Science Foundation DBI-1555470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica O. Winter.

Additional information

These authors have contributed equally to this work.

Appendices

Supplementary material

The supplementary material for this article can be found at https ://doi.org/10.1557/mrc.2019.41

Conflict of interest statement

In accordance with ethical obligation as a researcher, JOW reports that she has financial and business interests in a company (i.e., Core Quantum Technologies) that may be affected by the research reported in the enclosed paper. JOW has disclosed those interests fully to the publishers, and has in place an approved plan for managing any potential conflicts arising from that involvement. This work was not funded by Core Quantum Technologies and the opinions represented are those of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.H., Porter, T. & Winter, J.O. Fluorescence loss of commercial aqueous quantum dots during preparation for bioimaging. MRS Communications 9, 702–709 (2019). https://doi.org/10.1557/mrc.2019.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.41

Navigation