Skip to main content
Log in

Alkyne-modified water-stable alkylammonium lead (II) iodide perovskite

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Perovskite materials are sensitive to environmental conditions. Here we report the synthesis and characterization of a hydrophobic alkylammonium lead(ll) iodide perovskite with enhanced stability in water. Water stability was achieved by growing a shell of 4-[(N-3-butyne)carbox-yamido]anilinium lead(ll) iodide over methylammonium lead(ll) iodide. As a proof of concept, the water-splitting reaction was performed using our new material coated on TiO2, and a 7-fold increase in applied bias photon-to-current efficiency was observed as compared with standard p25-TiO2. Such simple and versatile chemical modification to induce high water stability is useful toward exploring new applications for the perovskite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem.Soc. 131, 6050 (2009).

    Article  CAS  Google Scholar 

  2. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).

    Article  CAS  Google Scholar 

  3. H. Zhou, Q. Chen, G. Li, S. Luo, T-B. Song, H-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang: Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014).

    Article  CAS  Google Scholar 

  4. J. Yang, B.D. Siempelkamp, D. Liu, and T.L. Kelly: Investigation of CH3NH3Pbl3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955 (2015).

    Article  CAS  Google Scholar 

  5. D. Wang, M. Wright, N.K. Elumalai, and A. Uddin: Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255 (2016).

    Article  CAS  Google Scholar 

  6. S. Kumar and A. Dhar: Accelerated thermal-aging-induced degradation of organometal triiodide perovskite on ZnO nanostructures and its effect on hybrid photovoltaic devices. ACS Appl. Mater. Interfaces 8, 18309 (2016).

    Article  CAS  Google Scholar 

  7. Q. Jiang, D. Rebollar, J. Gong, E.L. Piacentino, C. Zheng, and T. Xu: Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb (SCN)2I thin films. Angew. Chem. Int. Ed. 54, 7617 (2015).

    Article  CAS  Google Scholar 

  8. S. Yang, Y. Wang, P. Liu, Y.B. Cheng, H.J. Zhao, and H.G. Yang: Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 1, 15016 (2016).

    Article  CAS  Google Scholar 

  9. G. Niu, W. Li, F. Meng, L. Wang, H. Donga, and Y. Qiu: Study on the stability of CH3NH3Pbl3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705 (2014).

    Article  CAS  Google Scholar 

  10. L. Zheng, Y.H. Chung, Y. Ma, L Zhang, L. Xiao, Z. Chen, S. Wang, B. Qu, and Q. Gong: A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem. Commun. 50, 11196 (2014).

    Article  CAS  Google Scholar 

  11. P. Da, M. Cha, L. Sun, Y. Wu, Z-S. Wang, and G. Zheng: High-performance perovskite photoanode enabled by Ni passivation and catalysis. Nano Lett. 15, 3452 (2015).

    Article  CAS  Google Scholar 

  12. J.H. Kim, Y. Jo, J.H. Kim, J.W. Jang, H.J. Kang, Y.H. Lee, D.S. Kim, Y. Jun, and J.S. Lee: Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in Tandem: a dual absorber artificial leaf. ACS Nano 9, 11820 (2015).

    Article  CAS  Google Scholar 

  13. D.N. Dirin, S. Dreyfuss, M.I. Bodnarchuk, G. Nedelcu, P. Papagiorgis, G. Itskos, and M.V. Kovalenko: Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J. Am. Chem. Soc. 136, 6550 (2014).

    Article  CAS  Google Scholar 

  14. I. Hwang, I. Jeong, J. Lee, M.J. Ko, and K. Yong: Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Appl. Mater. Interfaces!, 17330 (2015).

    Google Scholar 

  15. S. Guarnera, A. Abate, W. Zhang, J.M. Foster, G. Richardson, A. Petrozza, and H.J. Snaith: Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 6, 432 (2015).

    Article  CAS  Google Scholar 

  16. H-S. Kim, C-R. Lee, J-H. Im, K-B. Lee, T. Moehl, A. Marchioro, S-J. Moon, R. Humphry-Baker, J-H. Yum, J.E. Moser, M. Gratzel, and N-G. Park: Lead iodide perovskite sensitized all-solid-state submicron thin film meso-scopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  Google Scholar 

  17. S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Pechy, and M. Gratzel: Fabrication of screen-printing pastes from Ti02 powders for dye-sensitised solar cells. Prog. Photovolt: Res. Appl. 15, 603 (2007).

    Article  CAS  Google Scholar 

  18. T. Oku: Crystal Structures of CH3NH3Pbl3 and Related Perovskite Compounds Used for Solar Cell, Solar Cells-New Approaches and Reviews, ed. L.A. Kosyachenko, InTech, Rijeka, Croatia ISBN: 78-953-51-2184-8, DOI: 10.5772/59284. (2015). Available at: http:// www.intechopen.com/books/solar-cells-new-approaches-and-reviews/crystal-structures-of-ch3nh3pbi3-and-related-perovskite-compounds-used-for-solar-cells.

  19. F. Maxim, P. Ferreira, P.M. Vilarinho, and I. Reaney: Hydrothermal synthesis and crystal growth studies of BaTiO3 using Ti nanotube precursors. Cryst Growth Des. 8, 3309 (2008).

    Article  CAS  Google Scholar 

  20. H. Brune, C. Romainczyk, H. Roder, and K. Kern: mechanism of the transition from fractal to dendritic growth of surface aggregates. Nature 369, 469 (1994).

    Article  CAS  Google Scholar 

  21. B. Ranguelov, D. Goranova, V. Tonchev, and R. Yakimova: Diffusion limited aggregation with modified local rules. C R. Acad. Bulg. Sci. 65, 913 (2012).

    Google Scholar 

  22. K. Gelderman, L. Lee, and S.W. Donne: Flat-band potential of a semiconductor: W using the Mott-Schottky equation. J. Chem. Educ. 84, 685 (2007).

    Article  CAS  Google Scholar 

  23. M. Gratzel: Photoelectrochemical cells. Nature 414, 338 (2001).

    Article  CAS  Google Scholar 

  24. S. Aharon, A. Dymshits, A. Rotem, and L. Edgar: Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. J. Mater. Chem. A 3, 9171 (2015).

    Article  CAS  Google Scholar 

  25. T. Hisatomi, J. Kubota, and K. Domen: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520 (2014).

    Article  CAS  Google Scholar 

  26. R. Daghrir, P. Drogui, and D. Rober: Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52, 3581 (2013).

    Article  CAS  Google Scholar 

  27. Z. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, E.L. Miller, J.A. Turner, and H.N. Dinh: Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3 (2010).

    Article  Google Scholar 

  28. A.P. Upadhyay, D.K. Behara, G.P. Sharma, M. Gyanprakash, R.G.S. Pala, and S. Sivakumar: Fabricating appropriate band-edge-staggered hetero-semiconductors with optically activated Au nanoparticles via click chemistry for photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 4, 4511 (2016).

    Article  CAS  Google Scholar 

  29. Y. Gao, X. Ding, J. Liu, L Wang, Z. Lu, L. Li, and L. Sun: Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density. J. Am. Chem. Soc. 135, 4219 (2013).

    Article  CAS  Google Scholar 

  30. J. Wang, H.X. Zhong, Y.L. Qin, and X.B. Zhang: An efficient three-dimensional oxygen evolution electrode. Angew. Chem. Int. Ed. 52, 5248 (2013).

    Article  CAS  Google Scholar 

  31. K.H. Ji, D.M. Jang, Y.J. Cho, Y. Myung, H.S. Kim, Y. Kim, and J. Park: Comparative photocatalytic ability of nanocrystal-carbon nanotube and -TiO2 nanocrystal hybrid nanostructures. J. Phys. Chem. C 113, 19966 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Technology System Development program of the Department of Science and Technology, Government of India via project DST/TSG/SH/2011/106. S. S. and S. V. acknowledge the funding support from the National University of Singapore under the joint Ph.D. program between NUS and IITK. S. S. K. acknowledges the Centre for Environmental Science & Engineering, Thematic Unit of Excellence on Soft Nanofabrication, IITK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raj Ganesh S. Pala or Sri Sivakumar.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.56

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasmal, S., Valiyaveettil, S., Upadhyay, A.P. et al. Alkyne-modified water-stable alkylammonium lead (II) iodide perovskite. MRS Communications 8, 289–296 (2018). https://doi.org/10.1557/mrc.2018.56

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.56

Navigation