Skip to main content
Log in

Determination of adsorption-controlled growth windows of chalcogenide perovskites

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Ternary sulfides and selenides in the distorted-perovskite structure (“chalcogenide perovskites”) are predicted by theory to be semiconductors with a band gap in the visible-to-infrared and may be useful for optical, electronic, and energy conversion technologies. Here we use computational thermodynamics to predict the pressure–temperature phase diagrams for select chalcogenide perovskites. Our calculations incorporate formation energies calculated by density functional theory, and empirical estimates of heat capacities. We highlight the windows of thermodynamic equilibrium between solid chalcogenide perovskites and the vapor phase at high temperature and very low pressure. These results can guide the adsorption-limited growth of ternary chalcogenides by molecular beam epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, and F. Rosei: Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 9, 61–67 (2015).

    Article  CAS  Google Scholar 

  2. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E. M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, and A.M. Rappe: Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503, 509–512 (2013).

    Article  CAS  Google Scholar 

  3. R.F. Berger and J.B. Neaton: Computational design of low-band-gap double perovskites. Phys. Rev. B 86, 165211 (2012).

    Article  Google Scholar 

  4. W.S. Choi, M.F. Chisholm, D.J. Singh, T. Choi, G.E. Jellison Jr., and H. N. Lee: Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat. Commun. 3, 689 (2012), ncomms1690.

    Article  Google Scholar 

  5. G.Y. Gou, J.W. Bennett, H. Takenaka, and A.M. Rappe: Post density functional theoretical studies of highly polar semiconductive Pb (Ti1-xNix) O3-x solid solutions: effects of cation arrangement on band gap. Phys. Rev. B 83, 205115 (2011).

    Article  Google Scholar 

  6. X.S. Xu, J.F. Ihlefeld, J.H. Lee, O.K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X.Q. Pan, D.G. Schlom, and J.L. Musfeldt: Tunable band gap in Bi(Fe1-xMnx)O3 films. Appl. Phys. Lett. 96, 192901 (2010).

    Article  Google Scholar 

  7. S. Parida, A. Satapathy, E. Sinha, A. Bisen, and S.K. Rout: Effect of neodymium on optical bandgap and microwave dielectric properties of barium zirconate ceramic. Metall. Mater. Trans. A 46, 1277–1286 (2015).

    Article  CAS  Google Scholar 

  8. S. Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D.J. Singh, R. Kapadia, and J. Ravichandran: Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 29, 1604733 (2017).

    Article  Google Scholar 

  9. J.A. Brehm, H. Takenaka, C.-W. Lee, I. Grinberg, J.W. Bennett, M. R. Schoenberg, and A.M. Rappe: Density functional theory study of hypothetical PbTiO3-based oxysulfides. Phys. Rev. B 89, 195202 (2014).

    Article  Google Scholar 

  10. S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D.F. Watson, B. Weinstein, Y.-Y. Sun, S. Zhang, and H. Zeng: Chalcogenide perovskites—an emerging class of ionic semiconductors. Nano Energy 22, 129–135 (2016).

    Article  CAS  Google Scholar 

  11. A. Meetsma, G.A. Wiegers, and J.L. de Boer: Structure determination of SnZrS3. Acta Crystallogr. C 49, 2060–2062 (1993).

    Article  Google Scholar 

  12. A. Clearfield: The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr. 16, 135–142 (1963).

    Article  CAS  Google Scholar 

  13. C.-S. Lee, K.M. Kleinke, and H. Kleinke: Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci. 7, 1049–1054 (2005).

    Article  CAS  Google Scholar 

  14. H. Hahn and U. Mutschke: Untersuchungen über ternäre Chalkogenide. XI. Versuche zur Darstellung von Thioperowskiten. Z. Anorg. Allg. Chem. 288, 269–278 (1957).

    Article  Google Scholar 

  15. L. Schmidt: Superconductivity in PbNbS3 and PbTaS3. Phys. Lett. A 31, 551–552 (1970).

    Article  CAS  Google Scholar 

  16. R. Lelieveld and D.J.W. IJdo: Sulphides with the GdFeO3 structure. Acta Crystallogr. B 36, 2223–2226 (1980).

    Article  Google Scholar 

  17. J.W. Bennett, I. Grinberg, and A.M. Rappe: Effect of substituting of S for O: the sulfide perovskite BaZrS3 investigated with density functional theory. Phys. Rev. B 79, 235115 (2009).

    Article  Google Scholar 

  18. Y.-Y. Sun, M.L. Agiorgousis, P. Zhang, and S. Zhang: Chalcogenide perovskites for photovoltaics. Nano Lett. 15, 581–585 (2015).

    Article  CAS  Google Scholar 

  19. B. Kolb and A.M. Kolpak: First-principles design and analysis of an efficient, Pb-free ferroelectric photovoltaic absorber derived from ZnSnO3. Chem. Mater. 27, 5899–5906 (2015).

    Article  CAS  Google Scholar 

  20. W. Meng, B. Saparov, F. Hong, J. Wang, D.B. Mitzi, and Y. Yan: Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 28, 821–829 (2016).

    Article  CAS  Google Scholar 

  21. H. Wang, G. Gou, and J. Li: Ruddlesden-Popper perovskite sulfides A3B2S7: a new family of ferroelectric photovoltaic materials for the visible spectrum. Nano Energy 22, 507–513 (2016).

    Article  CAS  Google Scholar 

  22. M.-G. Ju, J. Dai, L. Ma, and X.C. Zeng: Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv. Energy Mater. 7, 1700216 (2017).

    Article  Google Scholar 

  23. J.Y. Tsao: Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, Boston, 1993).

    Google Scholar 

  24. M. Henini: Molecular Beam Epitaxy: from Research to Mass Production (Elsevier, Amsterdam, 2013).

    Google Scholar 

  25. C.D. Theis, J. Yeh, D.G. Schlom, M.E. Hawley, and G.W. Brown: Adsorption-controlled growth of PbTiO3 by reactive molecular beam epitaxy. Thin Solid Films 325, 107–114 (1998).

    Article  CAS  Google Scholar 

  26. R.C. Haislmaier, G. Stone, N. Alem, and R. Engel-Herbert: Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy. Appl. Phys. Lett. 109, 043102 (2016).

    Article  Google Scholar 

  27. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A. E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, and M.-A. Van Ende: FactSage thermochemical software and databases, 2010-2016. Calphad 54, 35–53 (2016).

    Article  CAS  Google Scholar 

  28. H. Kopp: Investigations of the specific heat of solid bodies. Philos. Trans. R. Soc. Lond. 155, 71–202 (1865).

    Google Scholar 

  29. J. Leitner, P. Voňnka, D. Sedmidubský, and P. Svoboda: Application of Neumann-Kopp rule for the estimation of heat capacity of mixed oxides. Thermochim. Acta 497, 7–13 (2010).

    Article  CAS  Google Scholar 

  30. G.I. Csonka, J.P. Perdew, A. Ruzsinszky, P.H.T. Philipsen, S. Lebègue, J. Paier, O.A. Vydrov, and J.G. Ángyán: Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 79, 155107 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

S. A. F. acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors (s) and do not necessarily reflect the views of the National Science Foundation. Y.-Y. S. acknowledges support from the National Natural Science Foundation of China under Grant No. 11774365. This project was funded in part by the MIT Skoltech Seed Fund, as part of the MIT Skoltech Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jaramillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippone, S.A., Sun, YY. & Jaramillo, R. Determination of adsorption-controlled growth windows of chalcogenide perovskites. MRS Communications 8, 145–151 (2018). https://doi.org/10.1557/mrc.2018.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.10

Navigation