Skip to main content
Log in

Block copolymers with stable radical and fluorinated groups by ATRP

  • Polymers/Soft Matter Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Polymers with stable radical groups are promising materials for organic electronic devices due to their unique redox activity. Block copolymers with one redox active block could be used in nanostructured devices for electronic applications. We report on the synthesis and characterization of such multifunctional block copolymers in which phase separation on the 10 nm (half pitch) scale is achieved by using fluorinated blocks. Fluorination of one block increases the degree of phase separation and leads to smaller accessible domain sizes. Block copolymers with 60%, 80% and 90% of a stable radical containing block and either fluorinated or non-fluorinated second blocks were made by atom transfer radical polymerization, and their microstructure formation as a function of fluorine content is described after solvent vapor or thermal annealing. Electrical characterization of such a partly fluorinated block copolymer shows their potential for electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Table I
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. O.H. Griffith, J.F.W. Keana, S. Rottschaefer, and T.A. Warlick: Preparation and magnetic resonance of nitroxide polymers. J. Am. Chem. Soc. 89, 5072 (1967).

    Article  CAS  Google Scholar 

  2. K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, and E. Hasegawa: Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359, 351 (2002).

    Article  CAS  Google Scholar 

  3. K. Oyaizu and H. Nishide: Radical polymers for organic electronic devices: a radical departure from conjugated polymers?Adv. Mater. 8555, 2339 (2009).

    Article  Google Scholar 

  4. K. Nakahara, K. Oyaizu, and H. Nishide: Organic radical battery approaching practical use. Chem. Lett. 40, 222 (2011).

    Article  CAS  Google Scholar 

  5. T. Janoschka, M.D. Hager, and U.S. Schubert: Powering up the future: radical polymers for battery applications. Adv. Mater. 24, 6397 (2012).

    Article  CAS  Google Scholar 

  6. H-Q. Li, Y. Zou, and Y-Y. Xia: A study of nitroxide polyradical/activated carbon composite as the positive electrode material for electrochemical hybrid capacitor. Electrochim. Acta 52, 2153 (2007).

    Article  CAS  Google Scholar 

  7. M. Kamachi, M. Tamaki, Y. Morishima, S-i Nozakura, W. Mori, and M. Kishita: Electron exchange phenomena of polymers containing nitroxyl radicals. Polym. J. 14, 363 (1982).

    Article  CAS  Google Scholar 

  8. F. MacCorquodale, J.A. Crayston, J.C. Walton, and D.J. Worsfold: Synthesis and electrochemical characterization of poly(TEMPO-Acrylate). Tetrahedron Lett. 31, 771 (1990).

    Article  CAS  Google Scholar 

  9. Y. Yonekuta, K. Susuki, K. Oyaizu, K. Honda, and H. Nishide: Battery-inspired, nonvolatile, and rewritable memory architecture: a radical polymer-based organic device. J. Am. Chem. Soc. 129, 14128 (2007).

    Article  CAS  Google Scholar 

  10. T. Sukegawa, H. Omata, I. Masuko, K. Oyaizu, and H. Nishide: Anionic polymerization of 4-methacryloyloxy-TEMPO using an MMA- capped initiator. ACS Macro Lett. 3, 240 (2014).

    Article  CAS  Google Scholar 

  11. K. Oyaizu, Y. Ando, H. Konishi, and H. Nishide: Nernstian adsorbate-like bulk layer of organic radical polymers for high-density charge storage purposes. J. Am. Chem. Soc. 130, 14459 (2008).

    Article  CAS  Google Scholar 

  12. T. Suga, M. Sakata, K. Aoki, and H. Nishide: Synthesis of pendant radical- and ion-containing block copolymers via ring-opening metathesis polymerization for organic resistive memory. ACS Macro Lett. 3, 703 (2014).

    Article  CAS  Google Scholar 

  13. L. Rostro, A.G. Baradwaj, and B.W. Boudouris: Controlled radical polymerization and quantification of solid state electrical conductivities of macromolecules bearing pendant stable radical groups. ACS Appl. Mater. Interfaces 5, 9896 (2013).

    Article  CAS  Google Scholar 

  14. X. Zhuang, C. Xiao, K. Oyaizu, N. Chikushi, X. Chen, and H. Nishide: Synthesis of amphiphilic block copolymers bearing stable nitroxyl radicals. J. Polym. Sci. Part A Polym. Chem. 48, 5404 (2010).

    Article  CAS  Google Scholar 

  15. T. Janoschka, A. Teichler, A. Krieg, M.D. Hager, and U.S. Schubert: Polymerization of free secondary amine bearing monomers by RAFT polymerization and other controlled radical techniques. J. Polym. Sci. Part A Polym. Chem. 50, 1394 (2012).

    Article  CAS  Google Scholar 

  16. T. Uemukai, T. Hioki, and M. Ishifune: Thermoresponsive and redox behaviors of poly(N-isopropylacrylamide)-based block copolymers having TEMPO groups as their side chains. Int. J. Polym. Sci. 2013, 196145 (2013).

    Article  Google Scholar 

  17. K. Saito, K. Hirose, T. Okayasu, H. Nishide, T. Milton, and W. Hearn: TEMPO radical polymer grafted silicas as solid state catalysts for the oxidation of alcohols. RSC Adv. 3, 9752 (2013).

    Article  CAS  Google Scholar 

  18. Y. Wang, M. Hung, and C. Lin: Patterned nitroxide polymer brushes for thin-film cathodes in organic radical batteries. Chem. Commun. 47, 1249 (2011).

    Article  CAS  Google Scholar 

  19. H. Lin, C. Li, and J. Lee: Nitroxide polymer brushes grafted onto silica nanoparticles as cathodes for organic radical batteries. J. Power Sources 196, 8098 (2011).

    Article  CAS  Google Scholar 

  20. C-H. Lin, W-J. Chou, and J-T. Lee: Three-dimensionally ordered macroporous nitroxide polymer brush electrodes prepared by surface-initiated atom transfer polymerization for organic radical batteries. Macromol. Rapid Commun. 33, 107 (2012).

    Article  CAS  Google Scholar 

  21. C. Lin, C. Chau, and J. Lee: Polymer Chemistry Synthesis and characterization of polythiophene grafted with a nitroxide radical polymer via atom transfer radical polymerization. Polym. Chem. 1467 (2012).

    Google Scholar 

  22. M-K. Hung, Y-H. Wang, C-H. Lin, H-C. Lin, and J-T. Lee: Synthesis and electrochemical behaviour of nitroxide polymer brush thin-film electrodes for organic radical batteries. J. Mater. Chem. 22, 1570 (2012).

    Article  CAS  Google Scholar 

  23. G. Hauffman, J. Rolland, J. Bourgeois, and A. Vlad: Synthesis of nitroxide-containing block copolymers for the formation of organic cathodes. J. Polym. Sci. Part A Polym. Chem. 51, 101 (2013).

    Article  CAS  Google Scholar 

  24. F. Behrends, H. Wagner, A. Studer, O. Niehaus, R. Pöttgen, and H. Eckert: Polynitroxides from Alkoxyamine Monomers: Structural and Kinetic Investigations by Solid State NMR. Macromolecules 46, 2553 (2013).

    Article  CAS  Google Scholar 

  25. M.W. Matsen, and F.S. Bates: Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29, 1091 (1996).

    Article  CAS  Google Scholar 

  26. A. Nunns, J. Gwyther, and I. Manners: Inorganic block copolymer lithography. Polymer (Guildf). 54, 1269 (2013).

    Article  CAS  Google Scholar 

  27. M.A. Hillmyer, and T.P. Lodge: Synthesis and self-assembly of fluorinated block copolymers. J. Polym. Sci. Part A Polym. Chem. 40, 1 (2002).

    Article  CAS  Google Scholar 

  28. H. Nishide, S. Iwasa, Y-J. Pu, T. Suga, K. Nakahara, and M. Satoh: Organic radical battery: nitroxide polymers as a cathode-active material. Electrochim. Acta 50, 827 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C. L. acknowledges financial support by the Deutsche Forschungsgemeinschaft (German Research Foundation, Forschungsstipendium Li 2526/2-1). A. M. acknowledges support by a seed grant from the Cornell Center for Materials Research, an NSF MRSEC program (DMR-1120296). AFM measurements were performed at the Cornell NanoScale Facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (grant ECCS-0335765). NMR spectroscopy was measured at the Cornell University NMR Facility. EPR spectroscopy was performed at ACERT, which is supported by the National Institute of General Medical Sciences of the National Institutes of Health (Award Number P41GM103521). We composed coin cells in the laboratories of Lynden A. Archer and thank Sampson Lau for assistance and help with the measurements of the charge-discharge behavior. We thank Boris Dzikovski for help with EPR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Ober.

Electronic supplementary material

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2015.50

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liedel, C., Moehle, A., Fuchs, G.D. et al. Block copolymers with stable radical and fluorinated groups by ATRP. MRS Communications 5, 441–446 (2015). https://doi.org/10.1557/mrc.2015.50

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.50

Navigation