Skip to main content
Log in

Enhanced performance and endurance of nano-porous platinum solid oxide fuel cell electrodes by oxygen partial pressure cycling

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We demonstrate that alternating the oxygen partial pressure gradient across a yttria-stabilized zirconia (YSZ) electrolyte membrane prior to solid oxide fuel cell (SOFC) testing with nanoporous Pt electrodes greatly increases (e.g. by >70-fold at 350 °C) peak power density compared with devices without pretreatment. Transiently altering the oxygen activity at the cathode–YSZ interface appears to change the wetting characteristics of the nanoporous Pt, significantly affecting the stability and low-temperature performance of the SOFCs. Image analysis and impedance spectroscopy results suggest that an increase in triple-phase boundary area fraction at the cathode–YSZ interface contributes to the observed effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Table I
Figure 6

Similar content being viewed by others

References

  1. Y.B. Kim, C.-M. Hsu, S.T. Connor, T.M. Gür, Y. Cui, and F.B. Prinz:Nanopore patterned Pt array electrodes for triple phase boundary study in low temperature SOFC. J. Electrochem. Soc. 157, B1269–B1274 (2010).

    Article  CAS  Google Scholar 

  2. U.P. Muecke, D. Beckel, A. Bernard, A. Bieberle-Hütter, S. Graf, A. Infortuna, P. Müller, J.L.M. Rupp, J. Schneider, and L.J. Gauckler: Micro solid oxide fuel cells on glass ceramic substrates. Adv. Funct. Mater. 18, 3158–3168 (2008).

    Article  CAS  Google Scholar 

  3. K. Kerman, B.K. Lai, and S. Ramanathan: Pt/Y0.16O1.92/Pt thin film solid oxide fuel cells: electrode microstructure and stability considerations. J. Power Sources 196, 2608–2614 (2011).

    Article  CAS  Google Scholar 

  4. N. Baumann, E. Mutoro, and J. Janek: Porous model type electrodes by induced dewetting of thin Pt films on YSZ substrates. Solid State Ionics 181, 7–15 (2010).

    Article  CAS  Google Scholar 

  5. H. Galinski, T. Ryll, P. Elser, J.L.M. Rupp, A. Bieberle-Hütter, and L.J. Gauckler: Agglomeration of Pt thin films on dielectric substrates. Phys. Rev. B 82, 235415 (2010).

    Article  Google Scholar 

  6. T. Ryll, H. Galinski, L. Schlagenhauf, P. Elser, J.L.M. Rupp, A. Bieberle-Hutter, and L.J. Gauckler: Microscopic and nanoscopic three-phase-boundaries of platinum thin-film electrodes on YSZ electrolyte. Adv. Funct. Mater. 21, 565 (2011).

    Article  CAS  Google Scholar 

  7. S.B. Adler: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004).

    Article  CAS  Google Scholar 

  8. T. Ryll, H. Galinski, L. Schlagenhauf, F. Rechberger, S. Ying, L.J. Gauckler, F.C.F. Mornaghini, Y. Ries, R. Spolenak, and M. Döbeli: Dealloying of platinum–aluminum thin films: electrode performance. Phys. Rev. B 84, 184111 (2011).

    Article  Google Scholar 

  9. A. Toghan, M. Khodari, F. Steinbach, and R. Imbihl: Microstructure of thin film platinum electrodes on yttrium stabilized zirconia prepared by sputter deposition. Thin Solid Films 519, 8139 (2011).

    Article  CAS  Google Scholar 

  10. E. Barsoukov and J.R. Macdonald: Impedance Spectroscopy, 2nd ed. (John Wiley & Sons, Inc, Hoboken, New Jersey, 2005) p. 521.

    Book  Google Scholar 

  11. R. O’Hayre, S.W. Cha, W. Colella, and F.B. Prinz: Fuel Cell Fundamentals, 1st ed. (John Wiley & Sons, Inc, Hoboken, New Jersey, 2006) p. 234.

    Google Scholar 

  12. A.K. Opitz, M.P. Hörlein, T. Huber, and J. Fleig: Current–voltage characteristics of platinum model electrodes on yttria-stabilized zirconia. J. Electrochem. Soc. 159, B502 (2012).

    Article  CAS  Google Scholar 

  13. M. Ni, M.K.H. Leung, and D.Y.C. Leung: Parametric study of solid oxide fuel cell performance. Energy Conv. Management 48, 1525 (2007).

    Article  CAS  Google Scholar 

  14. H. Pöpkea, E. Mutorob, B. Luerßena, and J. Janek: Oxygen reduction and oxidation at epitaxial model-type Pt(O2)/YSZ electrodes–on the role of PtOx formation on activation, passivation, and charge transfer. Catal. Today 202, 12 (2013).

    Article  Google Scholar 

  15. D.J. Srolovitz and S.A. Safran: Capillary instabilities in thin films. I. Energetics. J. Appl. Phys. 60, 247–254 (1986).

    Article  CAS  Google Scholar 

  16. A.Y. Lin and P.C. McIntyre: Morphological stability of mesoporous Pt thin films deposited via nanosphere lithography on YSZ. Electrochem. Solid-State Lett. 14, B96–B100 (2011).

    Article  CAS  Google Scholar 

  17. B.S. Clausen, J. Schiøtz, L. Grhbæk, C.V. Ovesen, K.W. Jacobsen, J.K. Norskov, and H. Topsøe: Wetting/non-wetting phenomena during catalysis: evidence from in situ on-line EXAFS studies of cu-based catalysts. Topics Catal. 1, 367–376 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. F.B. Prinz and his group at Stanford University for access to their Pt sputtering system. This research was supported in part by the Stanford Global Climate and Energy Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. McIntyre.

Supporting Information

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit {rs|http://dx.doi.org/10.1557/mrc.2013.25|url|}

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginestra, C.N., McIntyre, P.C. Enhanced performance and endurance of nano-porous platinum solid oxide fuel cell electrodes by oxygen partial pressure cycling. MRS Communications 3, 123–128 (2013). https://doi.org/10.1557/mrc.2013.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.25

Navigation