Skip to main content

Advertisement

Log in

Cooperative self-assembly of porphyrins and derivatives

  • Self-Assembled Porphyrin and Macrocycle Derivatives
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

There has been widespread recent interest in self-assembly and synthesis of porphyrin and its derivatives-based ordered arrays aiming to emulate natural light-harvesting processes and energy storage. However, technologies that leverage the structural advantages of individual porphyrins have not been fully realized and have been limited by available synthesis methods. This article provides general perspectives on porphyrin and derivative chemistry, and discussions on surfactant-assisted cooperative self-assembly using amphiphilic surfactants and functional porphyrins and derivatives. The cooperative self-assembly amplifies the intrinsic advantages of individual porphyrins by engineering them into well-defined one-dimensional–three-dimensional (1D–3D) nanostructures. Surfactant-assisted self-assembly of amphiphilic surfactants and porphyrins has been utilized to form well-defined “micelle-like” nanostructures. Driven by intermolecular interactions, subsequent nucleation and growth confined within these nanostructures lead to the formation of 1D–3D ordered optically and electrically active nanomaterials with structure and function on multiple length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. R.E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell, Oxford, 2002).

    Google Scholar 

  2. D.C. Mauzerall, Clin. Dermatol. 16, 195 (1998).

    Google Scholar 

  3. D. Dolphin, The Porphyrins (Academic Press, New York, 1978).

    Google Scholar 

  4. C.M. Drain, G. Smeureanua, S. Patela, X. Gong, J. Garnod, J. Arijeloyea, New J. Chem. 30, 1834 (2006).

    Google Scholar 

  5. C.M.a.C. Drain, in Encyclopedia of Nanoscience and Nanotechnology, H.S. Nalwa, Ed. (American Scientific Press, New York, 2004), p. 593.

  6. K.M. Smith, Porphyrin and Metaloporphyrin (Elsevier, Amsterdam, 1972).

    Google Scholar 

  7. K.S. Suslick, “Applications: Past, Present, and Future,” in The Porphyrin Handbook, K.M. Kadish, R. Guilard, Eds. (Academic Press, New York, 2000).

  8. C.M. Drain, A. Varotto, I. Radivojevic, Chem. Rev. 109, 1630 (2009).

    Google Scholar 

  9. H. Zuber, R.J. Cogdell, “Structure and Organization of Purple Bacterial Antenna Complexes,” in Anoxygenic Photosynthetic Bacteria, R.E. Blankenship, M.T. Madigan, C.E. Bauer, Eds. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995) pp. 315–348.

  10. H. Zuber, R.A. Brunisholz, “Structure and Function of Antenna Polypeptides and Chlorophyll-Protein Complexes: Principles and Variability,” in Chlorophylls, H. Sheer, Ed. (CRC Press, Boca Raton, FL, 1991) pp. 627–703.

  11. M.R. Wasielewski, J. Org. Chem. 71, 5051 (2006).

    Google Scholar 

  12. S. George, I. Goldberg, Cryst. Growth Des. 6, 755 (2006).

    Google Scholar 

  13. K. Fujimoto, T. Toyoshi, Y. Doi, M. Inouye, Mater. Sci. Eng. C 27, 142 (2007).

    Google Scholar 

  14. M. Shmilovits, M. Vinodu, I. Goldberg, New J. Chem. 28, 223 (2004).

    Google Scholar 

  15. M.C. Balaban, A. Eichhofer, G. Buth, R. Hauschild, J.D. Szmytkowski, H. Kalt, T.S. Balaban, J. Phys. Chem. B 112, 5512 (2008).

    Google Scholar 

  16. M. Koepf, A. Trabolsi, M. Elhabiri, J.A. Wytko, D. Paul, A.M. Albrecht-Gary, J. Weiss, Org. Lett. 7, 1279 (2005).

    Google Scholar 

  17. X. Gong, T. Milic, C. Xu, J.D. Batteas, C.M. Drain, J. Am. Chem. Soc. 124, 14290 (2002).

    Google Scholar 

  18. R.W. Wagner, T.E. Johnson, J.S. Lindsey, J. Am. Chem. Soc. 118, 11166 (1996).

    Google Scholar 

  19. J. Wang, Y. Zhong, L. Wang, N. Zhan, R. Cao, K. Bian, L. Alarid, R.E. Haddad, F. Bai, H. Fan, Nano Lett. 16, 6523 (2016).

    Google Scholar 

  20. N. Zhang, L. Wang, H. Wang, R. Cao, J. Wang, F. Bai, H. Fan, Nano Lett. 18, 560 (2018).

    Google Scholar 

  21. Y. Zhong, J. Wang, R. Zhang, W. Wei, H. Wang, X. Lu, F. Bai, H. Wu, R. Haddad, H. Fan, Nano Lett. 14, 7175 (2014).

    Google Scholar 

  22. Y. Zhong, Z. Wang, R. Zhang, F. Bai, H. Wu, R. Haddad, H. Fan, ACS Nano 8, 827 (2014).

    Google Scholar 

  23. D.E. Barlow, L. Scudiero, K.W. Hipps, Langmuir 20, 4413 (2004).

    Google Scholar 

  24. Y.-H. Chan, A.E. Schuckman, L.M. Perez, M. Vinodu, C.M. Drain, J.D. Batteas, J. Phys. Chem. C 112, 6110 (2008).

    Google Scholar 

  25. L. Scudiero, K.W. Hipps, D.E. Barlow, J. Phys. Chem. B 107, 2903 (2003).

    Google Scholar 

  26. I. Goldberg, Chem. Commun. 10, 1243 (2005).

    Google Scholar 

  27. T. Gensch, J. Hofkens, A. Heirmann, K. Tsuda, W. Verheijen, T. Vosch, T. Christ, T. Basché, K. Müllen, F.C. De Schryver, Angew. Chem. Int. Ed. Engl. 38, 3752 (1999).

    Google Scholar 

  28. J. Hofkens, M. Maus, T. Gensch, T. Vosch, M. Cotlet, F. Kohn, A. Herrmann, K. Mullen, F. De Schryver, J. Am. Chem. Soc. 122, 9278 (2000).

    Google Scholar 

  29. Z. Wang, C.J. Medforth, J.A. Shelnutt, J. Am. Chem. Soc. 126, 16720 (2004).

    Google Scholar 

  30. Z. Wang, C.J. Medforth, J.A. Shelnutt, J. Am. Chem. Soc. 126, 15954 (2004).

    Google Scholar 

  31. Z. Wang, Z. Li, C.J. Medforth, J.A. Shelnutt, J. Am. Chem. Soc. 129, 2440 (2007).

    Google Scholar 

  32. J.-S. Hu, Guo, H.-P. Liang, L.-J. Wan, L. Jiang, J. Am. Chem. Soc. 127, 17090 (2005).

    Google Scholar 

  33. H. Fan, Chem. Commun. 12, 1383 (2008).

    Google Scholar 

  34. H. Fan, E.W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge, T. Boyle, M.C. Wilson, C.J. Brinker, Nano Lett. 5, 645 (2005).

    Google Scholar 

  35. H. Fan, K. Yang, D.M. Boye, T. Sigmon, K.J. Malloy, H. Xu, G.P. Lopez, C.J. Brinker, Science 304, 567 (2004).

    Google Scholar 

  36. M. Chen, T. Pica, Y.-B. Jiang, P. Li, K. Yano, J.P. Liu, A.K. Datye, H. Fan, J. Am. Chem. Soc. 129, 6348 (2007).

    Google Scholar 

  37. F. Bai, Z. Sun, H. Wu, R.E. Haddad, E.N. Coker, J.Y. Huang, M.A. Rodriguez, H. Fan, Nano Lett. 11, 5196 (2011).

    Google Scholar 

  38. F. Bai, H. Wu, R.E. Haddad, Z. Sun, S.K. Schmitt, V.R. Skocypec, H. Fan, Chem. Commun. 46, 4941 (2010).

    Google Scholar 

  39. J. Wang, Y. Zhong, X. Wang, W. Yang, F. Bai, B. Zhang, L. Alarid, K. Bian, H. Fan, Nano Lett. 17, 6916 (2017).

    Google Scholar 

  40. D. Wang, L. Niu, Z.-Y. Qiao, D.-B. Cheng, J. Wang, Y. Zhong, F. Bai, H. Wang, H. Fan, ACS Nano 12, 3796 (2018).

    Google Scholar 

  41. Z. Sun, F. Bai, H. Wu, S.K. Schmitt, D.M. Boye, H. Fan, J. Am. Chem. Soc. 131, 13594 (2009).

    Google Scholar 

  42. Z. Sun, F. Bai, H. Wu, S.K. Schmitt, D.M. Boye, J. Zhang, J. Wang, H. Fan, Chem. Eur. J. 15, 11128 (2009).

    Google Scholar 

  43. J. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1992).

    Google Scholar 

Download references

Acknowledgements

H.F. acknowledges partial support from the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (US DOE) Office of Science and Sandia’s Laboratory Directed Research & Development Program. W.W. acknowledges support from the National Natural Science Foundation of China (21422102 and 21403054). This article describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the article do not necessarily represent the views of the US DOE or the United States Government. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US DOE’s National Nuclear Security Administration under Contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Wei.

Additional information

Denotes equal contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Sun, J. & Fan, H. Cooperative self-assembly of porphyrins and derivatives. MRS Bulletin 44, 178–182 (2019). https://doi.org/10.1557/mrs.2019.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.39

Navigation