Skip to main content
Log in

First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation

  • Article
  • Nanocrystalline High Entropy Materials: Processing Challenges and Properties
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cold-sprayed high-entropy alloy (HEA) coatings have been generated for the first time. Mechanically alloyed (MA) AlCoCrFeNi powder was chosen as feedstock, owing to the extensive literature on this alloy. Coatings were synthesized under various gas temperature and pressure conditions. Isothermal oxidation was conducted at 1100 °C for 25 h on the coating cold-sprayed at 400 °C and 10 bar on a Ni-base superalloy substrate. The as-sprayed coating retained the MA phases and formed a protective alumina layer upon oxidation. An interdiffusion zone at the interface and unanticipated Mo diffusion from the superalloy substrate into the coating were observed after oxidation. A comprehensive characterization at the coating—substrate interface suggests that diffusion in HEAs is not sluggish. The factors governing the coating’s oxidation are elucidated, and a plausible oxidation mechanism is discussed. These studies are aimed at developing oxidation-resistant HEA coatings for potential applications at high operating temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).

    Article  Google Scholar 

  3. M.C. Gao, P.K. Liaw, J.W. Yeh, and Y. Zhang: High-Entropy Alloys (Springer International Publishing, Zurich, Switzerland, 2016).

    Book  Google Scholar 

  4. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 488 (2017).

    Article  Google Scholar 

  5. C. Zhang, F. Zhang, S. Chen, and W. Cao: Computational thermodynamics aided high-entropy alloy design. JOM 64, 839 (2012).

    Article  CAS  Google Scholar 

  6. W-R. Wang, W-L. Wang, S-C. Wang, Y-C. Tsai, C-H. Lai, and J-W. Yeh: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44 (2012).

    Article  Google Scholar 

  7. A. Manzoni, H. Daoud, R. Volkl, U. Glatzel, and N. Wanderka: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132, 212 (2013).

    Article  CAS  Google Scholar 

  8. W. Ji, Z. Fu, W. Wang, H. Wang, J. Zhang, Y. Wang, and F. Zhang: Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J. Alloys Compd. 589, 61 (2014).

    Article  CAS  Google Scholar 

  9. S. Uporov, V. Bykov, S. Pryanichnikov, A. Shubin, and N. Uporova: Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy. Intermetallics 83, 1 (2017).

    Article  CAS  Google Scholar 

  10. M. Vaidya, A. Prasad, A. Parakh, and B.S. Murty: Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying. Mater. Des. 126, 37 (2017).

    Article  CAS  Google Scholar 

  11. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, and N.K. Mukhopadhyay: Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29, 2221 (2018).

    Article  CAS  Google Scholar 

  12. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu: Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Mater. Sci. Eng., A 491, 154 (2008).

    Article  Google Scholar 

  13. Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F. Yang, and P.K. Liaw: Tensile ductility of an AlCoCrFeNi multi-phase high-entropy ally through hot isostatic pressing (HIP) and homogenization. Mater. Sci. Eng., A 647, 229 (2015).

    Article  CAS  Google Scholar 

  14. Z.M. Jiao, Z.H. Wang, R.F. Wu, and J.W. Qiao: Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy. Appl. Phys. A 122, 794 (2016).

    Article  Google Scholar 

  15. S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, and K. Biswas: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299 (2017).

    Article  CAS  Google Scholar 

  16. E. Ghassemali, R. Sonkusare, K. Biswas, and N.P. Gurao: In situ study of crack initiation and propagation in a dual phase AlCoCrFeNi high entropy alloy. J. Alloys Compd. 710, 539 (2017).

    Article  CAS  Google Scholar 

  17. T.M. Butler: Phase stability and oxidation behaviour of Al—Ni—Co—Cr—Fe based high-entropy alloys. Doctoral thesis, University of Alabama, Tuscaloosa, 2016.

  18. J. Dabrowa, G. Cieslak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, and M. Danielewski: Influence of Cu content on high temperature oxidation behaviour of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1). Intermetallics 84, 52 (2017).

    Article  CAS  Google Scholar 

  19. A. Zhang, J. Han, B. Su, and J. Meng: Tribological properties of AlCoCrFeNi high entropy alloy at elevated temperature. Tribology 37, 776 (2017).

    Google Scholar 

  20. P-K. Huang and J-W. Yeh: Inhibition of grain coarsening up to 1000 °C in (AlCrNbSiTiV)N superhard coatings. Scr. Mater. 62, 105 (2010).

    Article  CAS  Google Scholar 

  21. A.D. Pogrenbjak, I.V. Yakushchenko, O.V. Bondar, V.M. Beresnev, K. Oyoshi, O.M. Ivasishin, H. Amekura, Y. Takeda, M. Opielak, and C. Kozak: Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa)N coatings. J. Alloys Compd. 679, 155 (2016).

    Article  Google Scholar 

  22. C. Huang, Y. Zhang, J. Shen, and R. Vilar: Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surf. Coat. Technol. 206, 1389 (2011).

    Article  CAS  Google Scholar 

  23. N.P. Padture, M. Gell, and E.H. Jordan: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280 (2002).

    Article  CAS  Google Scholar 

  24. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, S. Praveen, R.S. Kottada, and B.S. Murty: Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi. Metall. Mater. Trans. A 46A, 791 (2015).

    Article  Google Scholar 

  25. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao: Cold spray coating: A review of material systems and future perspectives. Surf. Eng. 30, 369 (2014).

    Article  CAS  Google Scholar 

  26. A.P. Alkhimov and N. Anatoly: Gas-dynamic spraying method for applying a coating. U.S. Patent No. 5302414, 1994, accessed 24 July, 2018.

  27. H. Assadi, F. Gartner, T. Stoltenhoff, and H. Kreye: Bonding mechanism in cold gas spraying. Acta Mater. 51, 3479 (2003).

    Article  Google Scholar 

  28. T. Stoltenhoff, H. Kreye, and H.J. Richter: An analysis of cold spray process and its coatings. J. Therm. Spray Technol. 11, 542 (2002).

    Article  CAS  Google Scholar 

  29. Q. Zhao, G. Ma, H. Wang, G. Li, S. Chen, and Y. Zhou: Review on preparation and application of high-entropy alloy coatings. Mater. Rev. 31, 65 (2017).

    Google Scholar 

  30. S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, K. Wen, and R. Lupoi: Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying. J. Mater. Sci. Technol. in press, accepted manuscript (2018). Available at: https://doi.org/10.1016/j.jmst.2018.12.015.

  31. ASM Handbook Volume 3: Alloy Phase Diagrams prepared under the direction of the ASM International Alloy Phase Diagram and Handbook Committees, Metals Park, Ohio (ASM International, 1992).

  32. G. Zhu, Y. Liu, and J. Ye: Early high-temperature oxidation behaviour of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Int. J. Refract. Met. Hard Mater. 44, 35 (2014).

    Article  CAS  Google Scholar 

  33. A. Kumar, A.K. Swarnakar, and M. Chopkar: Phase evolution and mechanical properties of AlCoCrFeNiSix high-entropy alloys synthesized by mechanical alloying and spark plasma sintering. J. Mater. Eng. Perform. 27, 3304 (2018).

    Article  CAS  Google Scholar 

  34. J. Chen, P. Niu, T. Wei, L. Hao, Y. Liu, H. Wang, and Y. Peng: Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J. Alloys Compd. 649, 630 (2015).

    Article  CAS  Google Scholar 

  35. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkimov, and V. Fomin: Cold Spray Technology (Elsevier, Science, Amsterdam, Netherlands, 2007); ch. 3.

    Google Scholar 

  36. C.S. Tedmon, Jr.: The effect of oxide volatilization on the oxidation kinetics of Cr and Fe—Cr alloys. J. Electrochem. Soc. 113, 766 (1966).

    Article  CAS  Google Scholar 

  37. A.G. Evans, D.R. Clarke, and C.G. Levi: The influence of oxides on the performance of advanced gas turbines. J. Eur. Ceram. Soc. 28, 1405 (2008).

    Article  CAS  Google Scholar 

  38. C. Wagner: Passivity and inhibition during the oxidation of metals at elevated temperatures. Corros. Sci. 5, 751 (1965).

    Article  CAS  Google Scholar 

  39. M.J. Pomeroy: Coatings for gas turbine materials and long-term stability issues. Mater. Des. 26, 223 (2005).

    Article  CAS  Google Scholar 

  40. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinki: Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211 (2018).

    Article  CAS  Google Scholar 

  41. Q. Li, W. Chen, J. Zhong, L. Zhang, Q. Chen, and Z-K. Liu: On sluggish diffusion in FCC Al—Co—Cr—Fe—Ni high-entropy alloys: An experimental and numerical study. Metals 8, 16 (2018).

    Article  Google Scholar 

  42. N. Kaur, M. Kumar, S.K. Sharma, D.Y. Kim, S. Kumar, N.M. Chavan, S.V. Joshi, N. Singh, and H. Singh: Study of mechanical properties and high temperature oxidation behavior of a novel cold-spray Ni–20Cr coating on boiler steels. Appl. Surf. Sci. 328, 13 (2015).

    Article  CAS  Google Scholar 

  43. S. Praveen, A. Anupam, R. Tilak, and R.S. Kottada: Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater. Chem. Phys. 210, 57 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support from the Aeronautics Research and Development Board (ARDB), India, via the project “Development of High Entropy Alloy (HEA) coatings as potential bond-coat materials for high temperature turbine engine applications” (sanction # ARDB/GTMAP/01/2031783/M/1/285/D(R&D)). Authors also thank Mr. Ashish Bharadwaj for assistance with the graphics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ameey Anupam or Ravi Sankar Kottada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anupam, A., Kumar, S., Chavan, N.M. et al. First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation. Journal of Materials Research 34, 796–806 (2019). https://doi.org/10.1557/jmr.2019.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.38

Navigation