Skip to main content
Log in

Gradient microstructure and texture in wedge-based severe plastic burnishing of copper

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present study, gradient microstructure and texture development in wedge-based severe plastic burnishing of oxygen-free high conductivity copper was investigated. Microstructural response and evolution of crystallographic texture in severe surface plastic deformation was shown to be controllable in terms of both magnitude and gradient through control of the incident wedge angle and burnishing parameters. Equiaxed ultra-fined grains and micro/nanoscale elongated grains were produced in the subsurface region, which is indicative of dynamic recrystallization at large strains in the subsurface. Subsurface regions exhibited a significant fraction of shear texture components along the 〈110〉 partial fibers. Texture evolution simulated using the visco-plastic self-consistent framework revealed variations in strain level controlling different mechanisms for rotation of these partial fibers from their ideal orientation. Controllability of subsurface properties and microstructure for such materials is briefly discussed. These results allude to fundamental limits in material processing by severe shear using scalable deformation configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. S.Q. Deng, A. Godfrey, W. Liu, and N. Hansen: A gradient nanostructure generated in pure copper by platen friction sliding deformation. Scr. Mater. 117, 41 (2016).

    Article  CAS  Google Scholar 

  2. X.C. Liu, H.W. Zhang, and K. Lu: Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342, 337 (2013).

    CAS  Google Scholar 

  3. Y. Guo, C. Saldana, W. Dale Compton, and S. Chandrasekar: Controlling deformation and microstructure on machined surfaces. Acta Mater. 59, 4538 (2011).

    Article  CAS  Google Scholar 

  4. Z. Pu, S. Yang, G.L. Song, O.W. Dillon, D.A. Puleo, and I.S. Jawahir: Ultrafine-grained surface layer on Mg–Al–Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scr. Mater. 65, 520 (2011).

    Article  CAS  Google Scholar 

  5. H.W. Huang, Z.B. Wang, X.P. Yong, and K. Lu: Enhancing torsion fatigue behaviour of a martensitic stainless steel by generating gradient nanograined layer via surface mechanical grinding treatment. Mater. Sci. Technol. 29, 1200 (2013).

    Article  CAS  Google Scholar 

  6. K. Lu: Making strong nanomaterials ductile with gradients. Science 345, 1455 (2014).

    Article  CAS  Google Scholar 

  7. X. Wu, P. Jiang, L. Chen, F. Yuan, and Y.T. Zhu: Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. U. S. A. 111, 7197 (2014).

    Article  CAS  Google Scholar 

  8. Y. Guo, W.D. Compton, and S. Chandrasekar: In situ analysis of flow dynamics and deformation fields in cutting and sliding of metals. Proc. R. Soc. A 471, 2178 (2015).

    Article  Google Scholar 

  9. T.G. Murthy, C. Saldana, M. Hudspeth, and R.M. Saoubi: Deformation field heterogeneity in punch indentation. Proc. R. Soc. A 470, 1 (2014).

    Article  Google Scholar 

  10. W.L. Li, N.R. Tao, and K. Lu: Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scr. Mater. 59, 546 (2008).

    Article  CAS  Google Scholar 

  11. T.S. Wang, J. Yang, C.J. Shang, X.Y. Li, B. Lv, M. Zhang, and F.C. Zhang: Sliding friction surface microstructure and wear resistance of 9SiCr steel with low-temperature austempering treatment. Surf. Coating. Technol. 202, 4036 (2008).

    Article  CAS  Google Scholar 

  12. S. Basu and M.R. Shankar: Spatial confinement-induced switchover in microstructure evolution during severe plastic deformation at micrometer length scales. Acta Mater. 79, 146 (2014).

    Article  CAS  Google Scholar 

  13. S. Basu, Z. Wang, R. Liu, and C. Saldana: Enhanced subsurface grain refinement during transient shear-based surface generation. Acta Mater. 116, 114 (2016).

    Article  CAS  Google Scholar 

  14. T.L. Brown, C. Saldana, T.G. Murthy, J.B. Mann, Y. Guo, L.F. Allard, A.H. King, W.D. Compton, K.P. Trumble, and S. Chandrasekar: A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper. Acta Mater. 57, 5491 (2009).

    Article  CAS  Google Scholar 

  15. A. Mahato, Y. Guo, N.K. Sundaram, and S. Chandrasekar: Surface folding in metals: A mechanism for delamination wear in sliding. Proc. R. Soc. A 470, 20140297 (2014).

    Article  Google Scholar 

  16. I.J. Beyerlein and L.S. Tóth: Texture evolution in equal-channel angular extrusion. Prog. Mater. Sci. 54, 427 (2009).

    Article  CAS  Google Scholar 

  17. C.F. Gu, L.S. Tóth, M. Arzaghi, and C.H.J. Davies: Effect of strain path on grain refinement in severely plastically deformed copper. Scr. Mater. 64, 284 (2011).

    Article  CAS  Google Scholar 

  18. S. Basu and M. Ravi Shankar: Crystallographic textures resulting from severe shear deformation in machining. Metall. Mater. Trans. A 46, 801 (2014).

    Article  Google Scholar 

  19. D. Sagapuram, M. Efe, W. Moscoso, S. Chandrasekar, and K.P. Trumble: Controlling texture in magnesium alloy sheet by shear-based deformation processing. Acta Mater. 61, 6843 (2013).

    Article  CAS  Google Scholar 

  20. H.A. Bruck, S.R. McNeill, M.A. Sutton, and W.H. Peters: Digital image correlation using Newton–Raphson method of partial differential correction. Exp. Mech. 29, 261 (1989).

    Article  Google Scholar 

  21. P. Lava, S. Cooreman, and D. Debruyne: Study of systematic errors in strain fields obtained via DIC using heterogeneous deformation generated by plastic FEA. Optic Laser. Eng. 48, 457 (2010).

    Article  Google Scholar 

  22. R.A. Lebensohn and C.N. Tomé: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater. 41, 2611 (1993).

    Article  CAS  Google Scholar 

  23. S. Li, I.J. Beyerlein, C.T. Necker, D.J. Alexander, and M. Bourke: Heterogeneity of deformation texture in equal channel angular extrusion of copper. Acta Mater. 52, 4859 (2004).

    Article  CAS  Google Scholar 

  24. N. Fang: Tool-chip friction in machining with a large negative rake angle tool. Wear 258, 890 (2005).

    Article  CAS  Google Scholar 

  25. C. Saldana, S. Basu, Z. Wang, and G.W. Woodruff: Deformation heterogeneity and texture in surface severe plastic deformation of copper. Proc. R. Soc. London, Ser. A 472, 20150486 (2016).

    Google Scholar 

  26. D.A. Hughes and N. Hansen: Microstructure and strength of nickel at large strains. Acta Mater. 48, 2985 (2000).

    Article  CAS  Google Scholar 

  27. S. Abolghasem, S. Basu, and M.R. Shankar: Quantifying the progression of dynamic recrystallization in severe shear deformation at high strain rates. J. Mater. Res. 28, 2056 (2013).

    Article  CAS  Google Scholar 

  28. S. Basu, Z. Wang, and C. Saldana: Anomalous evolution of microstructure and crystallographic texture during indentation. Acta Mater. 105, 25 (2016).

    Article  CAS  Google Scholar 

  29. W. Polkowski, P. Jóźwik, M. Polański, and Z. Bojar: Microstructure and texture evolution of copper processed by differential speed rolling with various speed asymmetry coefficient. Mater. Sci. Eng., A 564, 289 (2013).

    Article  CAS  Google Scholar 

  30. W.N. Findley and R.M. Reed: The influence of extreme speeds and rake angles in metal cutting. J. Eng. Ind. 85, 49 (1963).

    Article  Google Scholar 

  31. W.H. Huang, L. Chang, P.W. Kao, and C.P. Chang: Effect of die angle on deformation texture of copper processed by equal channel angular extrussion. Mater. Sci. Eng., A 307, 113 (2001).

    Article  Google Scholar 

  32. A. Gholinia, P. Bate, and P.B. Prangnell: Modelling texture development during equal channel angular extrusion of aluminium. Acta Mater. 50, 2121 (2002).

    Article  CAS  Google Scholar 

  33. H. Beladi, P. Cizek, and P.D. Hodgson: Dynamic recrystallization of austenite in Ni–30% Fe model alloy: Microstructure and texture evolution. Metall. Mater. Trans. A 40, 1175 (2009).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by NSF CMMI 1254818 and Third Wave Systems (via DOE subcontract DE-EE0005762).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Saldana.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Basu, S., Murthy, T.G. et al. Gradient microstructure and texture in wedge-based severe plastic burnishing of copper. Journal of Materials Research 33, 1046–1056 (2018). https://doi.org/10.1557/jmr.2018.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.58

Navigation