Skip to main content

Advertisement

Log in

Atomic layer deposition (ALD) of subnanometer inorganic layers on natural cotton to enhance oil sorption performance in marine environments

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

More than 1 million tons of oil is inadvertently spilled each year. The economic and environmental costs of these spills are enormous and compel further development of environmentally friendly sorbent materials. Here, we demonstrate a vapor-phase modification approach to create a new class of oil sorbents composed of cellulosic materials (cotton) coated with a subnanometer layer of inorganic oxide. This new cellulosic sorbent remains buoyant in water indefinitely and achieves a selective oil sorption capacity (23 g/g or 1.05 g/cm3) that is at least 35 times better than untreated cellulose in aqueous environments. This new sorbent particularly excels under “realistic” conditions such as continuous agitation (e.g., simulated waves) and presoaking in water (e.g., rain or forced immersion). When sorption performance is compared on a per-volume basis—which better captures use conditions than a per-mass basis—this modified natural product becomes comparable to the best sorbents reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. R.T. Carson, R.C. Mitchell, M. Hanemann, R.J. Kopp, S. Presser, and P.A. Ruud: Contingent valuation and lost passive use: Damages from the exxon valdez oil spill. Environ. Resour. Econ. 25, 257 (2003).

    Article  Google Scholar 

  2. A.H. Walker: Oil spills and risk perceptions. In Oil Spill Science and Technology, 2nd ed., M. Fingas, ed. (Gulf Professional Publishing, Houston, TX, 2017); ch. 1, p. 1.

    Google Scholar 

  3. C.H. Peterson, S.D. Rice, J.W. Short, D. Esler, J.L. Bodkin, B.E. Ballachey, and D.B. Irons: Long-term ecosystem response to the exxon valdez oil spill. Science 302, 2082 (2003).

    Article  CAS  Google Scholar 

  4. A. Jernelöv: Ixtoc I: A case study of the world’s largest oil spill. Ambio 10, 299 (1981).

    Google Scholar 

  5. D. Dave and A.E. Ghaly: Remediation technologies for marine oil spills: A critical review and comparative analysis. Am. J. Environ. Sci. 7, 424 (2011).

    Article  Google Scholar 

  6. ITOPF: Use of sorbent materials in oil spill response (2014). Available at: http://www.itopf.com/knowledge-resources/documents-guides/document/tip-8-use-of-sorbent-materials-in-oil-spill-response/ (accessed May 22, 2017).

  7. C. Federici and J. Mintz: Oil properties and their impact on spill response options (2014). Available at: https://www.bsee.gov/sites/bsee.gov/files/osrr-oil-spill-response-research/1017aa.pdf (accessed April 18, 2017).

  8. J. Ge, H.Y. Zhao, H.W. Zhu, J. Huang, L.A. Shi, and S.H. Yu: Advanced sorbents for oil-spill cleanup: Recent advances and future perspectives. Adv. Mater. 28, 10459 (2016).

    Article  CAS  Google Scholar 

  9. S. Wang, X.W. Peng, L.X. Zhong, J.W. Tan, S.S. Jing, X.F. Cao, W. Chen, C.F. Liu, and R.C. Sun: An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J. Mater. Chem. A 3, 8772 (2015).

    Article  CAS  Google Scholar 

  10. L.H. Yu, G.Z. Hao, L. Xiao, Q.S. Yin, M.T. Xia, and W. Jiang: Robust magnetic polystyrene foam for high efficiency and removal oil from water surface. Sep. Purif. Technol. 173, 121 (2017).

    Article  CAS  Google Scholar 

  11. H. Sai, R. Fu, L. Xing, J. Xiang, Z. Li, F. Li, and T. Zhang: Surface modification of bacterial cellulose aerogels’ web-like skeleton for oil/water separation. ACS Appl. Mater. Interfaces 7, 7373 (2015).

    Article  CAS  Google Scholar 

  12. A.M.E. Barry, J. Libera, J.W. Elam, and S. Darling: Advanced oil sorbents using sequential infiltration synthesis. J. Mater. Chem. A, 5, 2929–2935 (2017).

    Article  CAS  Google Scholar 

  13. J. Feng, S.T. Nguyen, Z. Fan, and H.M. Duong: Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels. Chem. Eng. J. 270, 168 (2015).

    Article  CAS  Google Scholar 

  14. C. Cojocaru, L. Pricop, P. Samoila, R. Rotaru, and V. Harabagiu: Surface hydrophobization of polyester fibers with poly(methylhydro-dimethyl)siloxane copolymers: Experimental design for testing of modified nonwoven materials as oil spill sorbents. Polym. Test. 59, 377 (2017).

    Article  CAS  Google Scholar 

  15. K. Lee, J.S. Jur, D.H. Kim, and G.N. Parsons: Mechanisms for hydrophilic/hydrophobic wetting transitions on cellulose cotton fibers coated using Al2O3 atomic layer deposition. J. Vac. Sci. Technol., A 30, 01A163 (2012).

    Article  Google Scholar 

  16. A. International: ASTM F726-12: Standard Test Method for Sorbent Performance of Adsorbents (2012); p. 6.

  17. K.E. Gregorczyk, D.F. Pickup, M.G. Sanz, I.A. Irakulis, C. Rogero, and M. Knez: Tuning the tensile strength of cellulose through vapor-phase metalation. Chem. Mater. 27, 181 (2015).

    Article  CAS  Google Scholar 

  18. G. Carchini, M. Garcia-Melchor, Z. Lodziana, and N. Lopez: Understanding and tuning the intrinsic hydrophobicity of rare earth oxides: A DFT plus U study. ACS Appl. Mater. Interfaces 8, 152 (2016).

    Article  CAS  Google Scholar 

  19. Y.S. Ho and G. McKay: A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 76, 332 (1998).

    Article  CAS  Google Scholar 

  20. Y.T. Demirel, I. Yati, R. Donmez, and H.B. Sonmez: Clean-up of oily liquids, fuels and organic solvents from the contaminated water fields using poly(propylene glycol) based organogels. Chem. Eng. J. 312, 126 (2017).

    Article  Google Scholar 

  21. G. Blanchard, M. Maunaye, and G. Martin: Removal of heavy metals from waters by means of natural zeolites. Water Res. 18, 1501 (1984).

    Article  CAS  Google Scholar 

  22. Y.S. Ho and G. McKay: Pseudo-second order model for sorption processes. Process Biochem. 34, 451 (1999).

    Article  CAS  Google Scholar 

  23. H.N. Tran, S-J. You, A. Hosseini-Bandegharaei, and H-P. Chao: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions. A critical review. Water Res. 120, 88 (2017).

    Article  CAS  Google Scholar 

  24. M.I. El-Khaiary, G.F. Malash, and Y-S. Ho: On the use of linearized pseudo-second-order kinetic equations for modeling adsorption systems. Desalination 257, 93 (2010).

    Article  CAS  Google Scholar 

  25. W. Plazinski, W. Rudzinski, and A. Plazinska: Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv. Colloid Interface Sci. 152, 2 (2009).

    Article  CAS  Google Scholar 

  26. UPS: How to determine billable weight (2017). Available at: https://www.ups.com/content/us/en/resources/ship/packaging/dim_weight.html (accessed March 24, 2017).

  27. D. Wang, E. McLaughlin, R. Pfeffer, and Y.S. Lin: Adsorption of oils from pure liquid and oil—water emulsion on hydrophobic silica aerogels. Sep. Purif. Technol. 99, 28 (2012).

    Article  CAS  Google Scholar 

  28. H. Bi, X. Huang, X. Wu, X. Cao, C. Tan, Z. Yin, X. Lu, L. Sun, and H. Zhang: Carbon microbelt aerogel prepared by waste paper: An efficient and recyclable sorbent for oils and organic solvents. Small 10, 3544 (2014).

    Article  CAS  Google Scholar 

  29. O. Karatum, S.A. Steiner, J.S. Griffin, W.B. Shi, and D.L. Plata: Flexible, mechanically durable aerogel composites for oil capture and recovery. ACS Appl. Mater. Interfaces 8, 215 (2016).

    Article  CAS  Google Scholar 

  30. S. Standeker, Z. Novak, and Z. Knez: Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J. Colloid Interface Sci. 310, 362 (2007).

    Article  CAS  Google Scholar 

  31. Y. Zhao, C. Hu, Y. Hu, H. Cheng, G. Shi, and L. Qu: A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem., Int. Ed. 51, 11371 (2012).

    Article  CAS  Google Scholar 

  32. S. Nguyen, J. Feng, N. Le, A. Le, N. Hoang, V. Tan, and H. Duong: Cellulose aerogel from paper waste for crude oil spill cleaning. Ind. Eng. Chem. Res. 52, 18386 (2013).

    Article  CAS  Google Scholar 

  33. V.O.A. Tanobe, T.H.D. Sydenstricker, S.C. Amico, J.V.C. Vargas, and S.F. Zawadzki: Evaluation of flexible postconsumed polyurethane foams modified by polystyrene grafting as sorbent material for oil spills. J. Appl. Polym. Sci. 111, 1842 (2009).

    Article  CAS  Google Scholar 

  34. J.T. Korhonen, M. Kettunen, R.H.A. Ras, and O. Ikkala: Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces 3, 1813 (2011).

    Article  CAS  Google Scholar 

  35. A. Venkateswara Rao, N.D. Hegde, and H. Hirashima: Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J. Colloid Interface Sci. 305, 124 (2007).

    Article  CAS  Google Scholar 

  36. X.C. Gui, J.Q. Wei, K.L. Wang, A.Y. Cao, H.W. Zhu, Y. Jia, Q.K. Shu, and D.H. Wu: Carbon nanotube sponges. Adv. Mater. 22, 617 (2010).

    Article  CAS  Google Scholar 

  37. N. Chen and Q.M. Pan: Versatile fabrication of ultralight magnetic foams and application for oil-water separation. ACS Nano 7, 6875 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alexandre Magasinski for performing BET measurements. Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for partial support of this research—Grant # 55526-DNI10. Additional support for this work came from the Georgia Tech President’s Undergraduate Research Awards (PURA) and the Roxanne D. Westendorf Undergraduate Research Fund. A portion of this research was conducted in Georgia Tech’s Materials Innovation & Learning Laboratory (The MILL), an uncommon “make and measure” space committed to elevating undergraduate research in materials science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Losego.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Short, A.E., Pamidi, S.V., Bloomberg, Z.E. et al. Atomic layer deposition (ALD) of subnanometer inorganic layers on natural cotton to enhance oil sorption performance in marine environments. Journal of Materials Research 34, 563–570 (2019). https://doi.org/10.1557/jmr.2018.441

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.441

Navigation