Skip to main content
Log in

Solution-processed oxide thin film transistors on shape memory polymer enabled by photochemical self-patterning

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Solution-processed metal oxide electronics on flexible substrates can enable applications from military to health care. Due to limited thermal budgets and mismatched coefficients of thermal expansion between oxides and substrates, achieving good performance in solution-processed oxide films remains a challenge. Additionally, the use of traditional photolithographic processes is incompatible with low-cost, high-throughput roll-to-roll processing. Here, we demonstrate solution-deposited oxide thin film transistors (TFTs) on a shape memory polymer substrate, which offers unique control of final device shape and modulus. The key enabling step is the exposure of the precursor film to UV-ozone through a shadow mask to perform patterning and photochemical conversion simultaneously. These TFTs exhibit mobility up to 160 cm2/(V s), subthreshold swing as low as 110 mV/dec, and threshold voltage between −2 and 0 V, while maintaining compatibility with a flexible form factor at processing temperatures below 250 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, and A.C. Arias: Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373 (2016).

    Article  CAS  Google Scholar 

  2. M.C. Choi, Y. Kim, and C.S. Ha: Polymers for flexible displays: From material selection to device applications. Prog. Polym. Sci. 33, 581 (2008).

    Article  CAS  Google Scholar 

  3. Q. Zhao, H.J. Qi, and T. Xie: Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50, 79 (2015).

    Article  Google Scholar 

  4. T. Ware, D. Simon, K. Hearon, C. Liu, S. Shah, J. Reeder, N. Khodaparast, M.P. Kilgard, D.J. Maitland, R.L. Rennaker, and W.E. Voit: Three-dimensional flexible electronics enabled by shape memory polymer substrates for responsive neural interfaces. Macromol. Mater. Eng. 297, 1193 (2012).

    Article  CAS  Google Scholar 

  5. J. Reeder, M. Kaltenbrunner, T. Ware, D. Arreaga-Salas, A. Avendano-Bolivar, T. Yokota, Y. Inoue, M. Sekino, W. Voit, T. Sekitani, and T. Someya: Mechanically adaptive organic transistors for implantable electronics. Adv. Mater. 26, 4967 (2014).

    Article  CAS  Google Scholar 

  6. G. Gutierrez-Heredia, O. Rodriguez-Lopez, A. Garcia-Sandoval, and W.E. Voit: Highly stable indium–gallium–zinc–oxide thin-film transistors on deformable softening polymer substrates. Adv. Electron. Mater. 3, 1700221 (2017).

    Article  Google Scholar 

  7. W.A. MacDonald: Engineered films for display technologies. J. Mater. Chem. 14, 4 (2004).

    Article  CAS  Google Scholar 

  8. W. Voit, T. Ware, R.R. Dasari, P. Smith, L. Danz, D. Simon, S. Barlow, S.R. Marder, and K. Gall: High-strain shape-memory polymers. Adv. Funct. Mater. 20, 162 (2010).

    Article  CAS  Google Scholar 

  9. Q. Fu, C-B. Cao, and H-S. Zhu: Preparation of alumina films from a new sol–gel route. Thin Solid Films 348, 99 (1999).

    Article  CAS  Google Scholar 

  10. S.J. Heo, D.H. Yoon, T.S. Jung, and H.J. Kim: Recent advances in low-temperature solution-processed oxide backplanes. J. Inf. Disp. 14, 79 (2013).

    Article  CAS  Google Scholar 

  11. C.J. Brinker and G.W. Scherer: Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic Press, Cambridge, MA, 1990); p. 68.

    Google Scholar 

  12. A. Liu, H. Zhu, Z. Guo, Y. Meng, and G. Liu: Solution combustion synthesis: Low-temperature processing for p-type Cu:NiO thin films for transparent electronics. Adv. Mater. 29, 1701599 (2017).

    Article  Google Scholar 

  13. M-G. Kim, M.G. Kanatzidis, A. Facchetti, and T.J. Marks: Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10, 382 (2011).

    Article  CAS  Google Scholar 

  14. B. Wang, X. Yu, P. Guo, W. Huang, L. Zeng, N. Zhou, L. Chi, M.J. Bedzyk, R.P.H. Chang, T.J. Marks, and A. Facchetti: Solution-processed all-oxide transparent high-performance transistors fabricated by spray-combustion synthesis. Adv. Electron. Mater. 2, 1500427 (2016).

    Article  Google Scholar 

  15. K. Tetzner, Y.H. Lin, A. Regoutz, A. Seitkhan, D.J. Payne, and T.D. Anthopoulos: Sub-second photonic processing of solution-deposited single layer and heterojunction metal oxide thin-film transistors using a high-power xenon flash lamp. J. Mater. Chem. C 5, 11724 (2017).

    Article  CAS  Google Scholar 

  16. Y-H. Kim, J-S. Heo, T-H. Kim, S. Park, M-H. Yoon, J. Kim, M.S. Oh, G-R. Yi, Y-Y. Noh, and S.K. Park: Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature 489, 128 (2012).

    Article  CAS  Google Scholar 

  17. Y.H. Hwang, S-J. Seo, J-H. Jeon, and B-S. Bae: Ultraviolet photo-annealing process for low temperature processed sol–gel zinc tin oxide thin film transistors. Electrochem. Solid-State Lett. 15, H91 (2012).

    Article  CAS  Google Scholar 

  18. S. Dellis, I. Isakov, N. Kalfagiannis, and K. Tetzner: Rapid laser-induced photochemical conversion of sol–gel precursors to In2O3 layers and their application in thin-film transistors. J. Mater. Chem. C 5, 3673 (2017).

    Article  CAS  Google Scholar 

  19. T. Jun, K. Song, Y. Jeong, K. Woo, D. Kim, C. Bae, and J. Moon: High-performance low-temperature solution-processable ZnO thin film transistors by microwave-assisted annealing. J. Mater. Chem. 21, 1102 (2011).

    Article  CAS  Google Scholar 

  20. S. Park, K-H. Kim, J-W. Jo, S. Sung, K-T. Kim, W-J. Lee, J. Kim, H.J. Kim, G-R. Yi, Y-H. Kim, M-H. Yoon, and S.K. Park: In-depth studies on rapid photochemical activation of various sol-gel metal oxide films for flexible transparent electronics. Adv. Funct. Mater. 25, 2807 (2015).

    Article  CAS  Google Scholar 

  21. Y.M. Park, A. Desai, A. Salleo, and L. Jimison: Solution-processable zirconium oxide gate dielectrics for flexible organic field effect transistors operated at low voltages. Chem. Mater. 25, 2571 (2013).

    Article  CAS  Google Scholar 

  22. T. Ware, D. Simon, D.E. Arreaga-Salas, J. Reeder, R. Rennaker, E.W. Keefer, and W. Voit: Fabrication of responsive, softening neural interfaces. Adv. Funct. Mater. 22, 3470 (2012).

    Article  CAS  Google Scholar 

  23. T.B. Daunis, G. Gutierrez-Heredia, O. Rodriguez-Lopez, J. Wang, W.E. Voit, and J.W.P. Hsu: Solution-deposited Al2O3 dielectric towards fully-patterned thin film transistors on shape memory polymer. Proc. SPIE 10105, 101051Z (2017).

    Article  Google Scholar 

  24. D.H. Lee, Y.J. Chang, and G.S. Herman: A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 19, 843 (2007).

    Article  CAS  Google Scholar 

  25. Y.S. Rim, H. Chen, Y. Liu, S-H. Bae, H.J. Kim, and Y. Yang: Direct light pattern integration of low-temperature solution-processed all-oxide flexible electronics. ACS Appl. Mater. Interfaces 8, 9680 (2014).

    CAS  Google Scholar 

  26. J-W. Jo, J. Kim, K-T. Kim, J-G. Kang, M-G. Kim, K-H. Kim, H. Ko, Y-H. Kim, and S.K. Park: Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol–gel metal-oxide dielectrics and semiconductors. Adv. Mater. 27, 1182 (2015).

    Article  CAS  Google Scholar 

  27. F. Honda and K. Hirokawa: X-ray photoelectron spectroscopic observation of nitrogen-containing gases adsorbed at high pressures on some transition metals. J. Electron Spectrosc. Relat. Phenom. 10, 125 (1977).

    Article  CAS  Google Scholar 

  28. J. Baltrusaitis, P.M. Jayaweera, and V.H. Grassian: XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. Phys. Chem. Chem. Phys. 11, 8295 (2009).

    Article  CAS  Google Scholar 

  29. J. Hwang, K. Lee, Y. Jeong, Y.U. Lee, C. Pearson, M.C. Petty, and H. Kim: UV-assisted low temperature oxide dielectric films for TFT applications. Adv. Mater. Interfaces 1, 1400206 (2014).

    Article  Google Scholar 

  30. X. Yu, J. Smith, N. Zhou, L. Zeng, P. Guo, Y. Xia, A. Alvarez, S. Aghion, H. Lin, J. Yu, R.P.H. Chang, M.J. Bedzyk, R. Ferragut, T.J. Marks, and A. Facchetti: Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors. Proc. Natl. Acad. Sci. U. S. A. 112, 3217 (2015).

    Article  CAS  Google Scholar 

  31. S. Sanctis, R.C. Hoffmann, M. Bruns, and J.J. Schneider: Direct photopatterning of solution-processed amorphous indium zinc oxide and zinc tin oxide semiconductors—A chimie douce molecular precursor approach to thin film electronic oxides. Adv. Mater. Interfaces 5, 1800324 (2018).

    Article  Google Scholar 

  32. P.K. Nayak, M.N. Hedhili, D. Cha, and H.N. Alshareef: High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric. Appl. Phys. Lett. 103, 033518 (2013).

    Article  Google Scholar 

  33. Y. Xu, X. Li, L. Zhu, and J. Zhang: Defect modification in ZnInSnO transistor with solution-processed Al2O3 dielectric by annealing. Mater. Sci. Semicond. Process. 46, 23 (2016).

    Article  CAS  Google Scholar 

  34. W. Xu, H. Wang, F. Xie, J. Chen, H. Cao, and J-B. Xu: Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors. ACS Appl. Mater. Interfaces 7, 5803 (2015).

    Article  CAS  Google Scholar 

  35. Y. Zhang, G. Huang, L. Duan, G. Dong, D. Zhang, and Y. Qiu: Full-solution-processed high mobility zinc-tin-oxide thin-film-transistors. Sci. China: Technol. Sci. 59, 1407 (2016).

    Article  CAS  Google Scholar 

  36. A. Liu, H. Zhu, H. Sun, Y. Xu, and Y-Y. Noh: Solution processed metal oxide high-κ dielectrics for emerging transistors and circuits. Adv. Mater. 30, 1706364 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. Robert Wallace for the use of the spectroscopic ellipsometer, Michael Womble for assistance in XRD measurements, and Sean Dillon and James Tran for help in FTIR measurements. This work is supported in part by the Center for Engineering Innovation and by SPARC. W.V. acknowledges support from the DARPA Young Faculty Award and DARPA Director’s Fellowship (No. D13AP00049). J.W.P.H. acknowledges the support from Texas Instruments Distinguished Chair in Nanoelectronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trey B. Daunis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daunis, T.B., Barrera, D., Gutierrez-Heredia, G. et al. Solution-processed oxide thin film transistors on shape memory polymer enabled by photochemical self-patterning. Journal of Materials Research 33, 2454–2462 (2018). https://doi.org/10.1557/jmr.2018.296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.296

Navigation