Skip to main content

Advertisement

Log in

Nitrogen-doped carbon “spider webs” derived from pyrolysis of polyaniline nanofibers in ammonia for capacitive energy storage

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Heteroatom-doped carbon materials have attracted immense interest as advanced supercapacitor electrode materials due to their unique properties. A carbon cloth-supported, nitrogen-doped carbon “spider web” network full of macropores and mesopores is developed via the pyrolysis of polyaniline nanofibers in ammonia atmosphere. The presence of mesopores and macropores can provide ion-buffering reservoirs to shorten the ion diffusion distance to the interior part of the carbon network. Carbonization in ammonia introduced N heteroatoms through gas phase chemical reactions between ammonia and the oxygen functionalities on the carbon surface. The enhanced ion-accessible surface area and improved charge transfer rate can be achieved. The N-doped carbon “spider web” exhibited a high specific capacitance of 266 F/g at a scan rate of 2 mV/s. Even when the scan rate was increased to 500 mV/s, 61% of its capacitance could still be retained, evidencing its excellent rate performance. The demonstrated strategy is anticipated to be generally effective for preparing heteroatom-doped carbon electrodes with other polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. V. Augustyn, P. Simon, and B. Dunn: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014).

    Article  CAS  Google Scholar 

  2. L.F. Chen, X.D. Zhang, H.W. Liang, M. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, and S.H. Yu: Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6, 7092 (2012).

    Article  CAS  Google Scholar 

  3. S. Dutta, A. Bhaumik, and K.C.W. Wu: Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574 (2014).

    Article  CAS  Google Scholar 

  4. D-Y. Feng, Y. Song, Z-H. Huang, X-X. Xu, and X-X. Liu: Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. J. Power Sources 324, 788 (2016).

    Article  CAS  Google Scholar 

  5. T. Liu, F. Zhang, Y. Song, and Y. Li: Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5, 17705 (2017).

    Article  CAS  Google Scholar 

  6. T. Zhai, X. Lu, H. Wang, G. Wang, T. Mathis, T. Liu, C. Li, Y. Tong, and Y. Li: An electrochemical capacitor with applicable energy density of 7.4 W h/kg at average power density of 3000 W/kg. Nano Lett. 15, 3189 (2015).

    Article  CAS  Google Scholar 

  7. M. Yu, D. Lin, H. Feng, Y. Zeng, Y. Tong, and X. Lu: Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew. Chem., Int. Ed. 56, 5454 (2017).

    Article  CAS  Google Scholar 

  8. M. Yu, S. Zhao, H. Feng, L. Hu, X. Zhang, Y. Zeng, Y. Tong, and X. Lu: Engineering thin MoS2 nanosheets on TiN nanorods: Advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett. 2, 1862 (2017).

    Article  CAS  Google Scholar 

  9. Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, and Y. Tong: Iron-based supercapacitor electrodes: Advances and challenges. Adv. Energy Mater. 6, 1601053 (2016).

    Article  CAS  Google Scholar 

  10. X. Lu, T. Liu, T. Zhai, G. Wang, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, and Y. Li: Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4, 1300994 (2014).

    Article  CAS  Google Scholar 

  11. X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, and Y. Li: H–TiO2@MnO2//H–TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25, 267 (2013).

    Article  CAS  Google Scholar 

  12. Y. Song, T. Liu, B. Yao, M. Li, T. Kou, Z-H. Huang, D-Y. Feng, F. Wang, Y. Tong, X-X. Liu, and Y. Li: Ostwald ripening improves rate capability of high mass loading manganese oxide for supercapacitors. ACS Energy Lett. 2, 1752 (2017).

    Article  CAS  Google Scholar 

  13. Y. Song, T.Y. Liu, B. Yao, T.Y. Kou, D.Y. Feng, X.X. Liu, and Y. Li: Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability. Small 13, 1700067 (2017).

    Article  CAS  Google Scholar 

  14. T. Zhai, L. Wan, S. Sun, Q. Chen, J. Sun, Q. Xia, and H. Xia: Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29, 1604167 (2017).

    Article  CAS  Google Scholar 

  15. B. Yao, L. Huang, J. Zhang, X. Gao, J. Wu, Y. Cheng, X. Xiao, B. Wang, Y. Li, and J. Zhou: Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28, 6353 (2016).

    Article  CAS  Google Scholar 

  16. F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong, and Y. Li: Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097 (2017).

    Article  CAS  Google Scholar 

  17. Y. Song, T. Liu, F. Qian, C. Zhu, B. Yao, E. Duoss, C. Spadaccini, M. Worsley, and Y. Li: Three-dimensional carbon architectures for electrochemical capacitors. J. Colloid Interface Sci., 509, 529 (2017).

    Article  CAS  Google Scholar 

  18. B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, and Y. Li: Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4, 1700107 (2017).

    Article  CAS  Google Scholar 

  19. D.W. Wang, F. Li, M. Liu, G.Q. Lu, and H.M. Cheng: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 47, 373 (2008).

    Article  CAS  Google Scholar 

  20. W. Zhang, H. Lin, Z. Lin, J. Yin, H. Lu, D. Liu, and M. Zhao: 3D hierarchical porous carbon for supercapacitors prepared from lignin through a facile template-free method. ChemSusChem 8, 2114 (2015).

    Article  CAS  Google Scholar 

  21. F. Zhang, T. Liu, G. Hou, T. Kou, L. Yue, R. Guan, and Y. Li: Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 9, 2875 (2016).

    Article  CAS  Google Scholar 

  22. D-s. Yuan, T-x. Zhou, S-l. Zhou, W-j. Zou, S-s. Mo, and N-n. Xia: Nitrogen-enriched carbon nanowires from the direct carbonization of polyaniline nanowires and its electrochemical properties. Electrochem. Commun. 13, 242 (2011).

    Article  CAS  Google Scholar 

  23. S. Chaudhari, S.Y. Kwon, and J-S. Yu: Ordered multimodal porous carbon with hierarchical nanostructure as high performance electrode material for supercapacitors. RSC Adv. 4, 38931 (2014).

    Article  CAS  Google Scholar 

  24. Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing, and Z. Fan: Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67, 119 (2014).

    Article  CAS  Google Scholar 

  25. S. Zhu, J. Li, C. He, N. Zhao, E. Liu, C. Shi, and M. Zhang: Soluble salt self-assembly-assisted synthesis of three-dimensional hierarchical porous carbon networks for supercapacitors. J. Mater. Chem. A 3, 22266 (2015).

    Article  CAS  Google Scholar 

  26. J.K. Ewert, D. Weingarth, C. Denner, M. Friedrich, M. Zeiger, A. Schreiber, N. Jäckel, V. Presser, and R. Kempe: Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids. J. Mater. Chem. A 3, 18906 (2015).

    Article  CAS  Google Scholar 

  27. J. Han, G. Xu, B. Ding, J. Pan, H. Dou, and D.R. MacFarlane: Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J. Mater. Chem. A 2, 5352 (2014).

    Article  CAS  Google Scholar 

  28. J. Hou, C. Cao, F. Idrees, and X. Ma: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9, 2556 (2015).

    Article  CAS  Google Scholar 

  29. L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, and R.S. Ruoff: Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5, 7936 (2012).

    Article  CAS  Google Scholar 

  30. L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang, and Y. Huang: Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ. Sci. 6, 2497 (2013).

    Article  CAS  Google Scholar 

  31. W. Luo, B. Wang, C.G. Heron, M.J. Allen, J. Morre, C.S. Maier, W.F. Stickle, and X. Ji: Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett. 14, 2225 (2014).

    Article  CAS  Google Scholar 

  32. G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, and Y. Li: Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26, 2676 (2014).

    Article  CAS  Google Scholar 

  33. Q.e. Zhang, A. Zhou, J. Wang, J. Wu, and H. Bai: Degradation-induced capacitance: A new insight into the superior capacitive performance of polyaniline/graphene composites. Energy Environ. Sci., 10, 2372 (2017).

    Article  CAS  Google Scholar 

  34. Y. Luo, D. Kong, Y. Jia, J. Luo, Y. Lu, D. Zhang, K. Qiu, C.M. Li, and T. Yu: Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance. RSC Adv. 3, 5851 (2013).

    Article  CAS  Google Scholar 

  35. L. Wang, Q. Yao, H. Bi, F. Huang, Q. Wang, and L. Chen: PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J. Mater. Chem. A 3, 7086 (2015).

    Article  CAS  Google Scholar 

  36. Z.H. Huang, T.Y. Liu, Y. Song, Y. Li, and X.X. Liu: Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale, 9, 13119 (2017).

    Article  CAS  Google Scholar 

  37. D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, and G.Q. Lu: Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater. 19, 1800 (2009).

    Article  CAS  Google Scholar 

  38. M. Yang, Y. Zhong, J. Bao, X. Zhou, J. Wei, and Z. Zhou: Achieving battery-level energy density by constructing aqueous carbonaceous supercapacitors with hierarchical porous N-rich carbon materials. J. Mater. Chem. A 3, 11387 (2015).

    Article  CAS  Google Scholar 

  39. Z. Li, Z. Xu, H. Wang, J. Ding, B. Zahiri, C.M.B. Holt, X. Tan, and D. Mitlin: Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy Environ. Sci. 7, 1708 (2014).

    Article  CAS  Google Scholar 

  40. Y. Song, T-Y. Liu, G-L. Xu, D-Y. Feng, B. Yao, T-Y. Kou, X-X. Liu, and Y. Li: Tri-layered graphite foil for electrochemical capacitors. J. Mater. Chem. A 4, 7683 (2016).

    Article  CAS  Google Scholar 

  41. L. Li, E. Liu, J. Li, Y. Yang, H. Shen, Z. Huang, X. Xiang, and W. Li: A doped activated carbon prepared from polyaniline for high performance supercapacitors. J. Power Sources 195, 1516 (2010).

    Article  CAS  Google Scholar 

  42. Y. Song, J-L. Xu, and X-X. Liu: Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J. Power Sources 249, 48 (2014).

    Article  CAS  Google Scholar 

  43. Z. Li, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B.C. Olsen, C.M.B. Holt, and D. Mitlin: Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2, 431 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Xiao-Xia Liu gratefully acknowledges financial support from National Natural Science Foundation of China (Nos. 21273029 and 21673035). Yat Li acknowledges support by National Aeronautics and Space Administration (NASA) Grant No. NNX15AQ01. Yu Song acknowledges the financial support from China Scholarship Council. We also acknowledge the help for SEM image acquisition offered by Dr. Tom Yuzvinsky from the W.M. Keck Center for Nanoscale Opto-fluidics at the University of California, Santa Cruz.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Song or Xiao-Xia Liu.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Qin, Z., Huang, Z. et al. Nitrogen-doped carbon “spider webs” derived from pyrolysis of polyaniline nanofibers in ammonia for capacitive energy storage. Journal of Materials Research 33, 1109–1119 (2018). https://doi.org/10.1557/jmr.2017.443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.443

Navigation