Skip to main content

Advertisement

Log in

Carbon nanofibers prepared by electrospinning accompanied with phase-separation method for supercapacitors: Effect of thermal treatment temperature

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbon nanofibers are prepared via the electrospinning method accompanied by the phase-separation process using polyacrylonitrile as a carbon precursor. Effects of preoxidation and carbonation temperatures on electrochemical performance are studied and optimized in detail. The morphology and porous structure are characterized by scanning electron microscope, transmission electron microscope, and nitrogen adsorption and desorption measurements, respectively; the electrochemical performances are measured by the CHI660E workstation. The results show that the diameter of carbon nanofibers is about 150–200 nm with a uniform and smooth surface. The optimized preoxidation temperature is 280 °C with a carbonation temperature of 700 °C. The highest capacitance is up to 155 F/g, and the symmetric supercapacitor delivers a maximum energy density of 7.78 W h/kg with a power density of 400 W/kg and a maximum power density of 4000 W/kg with an energy density of 2.0 W h/kg. The symmetric supercapacitor also exhibits good cycle stability 91.0% of initial specific capacitance after 5000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. H.D. Abruña, Y. Kiya, and J.C. Henderson: Batteries and electrochemical capacitors. Phys. Today 61, 43–47 (2008).

    Article  CAS  Google Scholar 

  2. J.R. Miller and A.F. Burke: Electrochemical capacitors challenges and opportunities for real-world applications. Electrochem. Soc. Interface 17, 53–57 (2008).

    Article  CAS  Google Scholar 

  3. P. Simon and Y. Gogotsi: Materials for electrochemical capacitor. Nat. Mater. 7, 845–854 (2008).

    Article  CAS  Google Scholar 

  4. A. Burke: Ultracapacitors: Why, how, and where is the technology. J. Power Sources 91, 37–50 (2000).

    Article  CAS  Google Scholar 

  5. A. Väyrynen and J. Salminen: Lithium ion battery production. J. Chem. Thermodyn. 46, 80–85 (2012).

    Article  CAS  Google Scholar 

  6. X. Lu, T. Zhai, X. Zhang, Y. Shen, L. Yuan, B. Hu, L. Gong, J. Chen, Y. Gao, J. Zhou, Y. Tong, and Z.L. Wang: WO3−x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 24, 938–944 (2012).

    Article  CAS  Google Scholar 

  7. M.M. Sk, C.Y. Yue, K. Ghosh, and R.K. Jena: Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J. Power Sources 308, 121–140 (2016).

    Article  CAS  Google Scholar 

  8. B. Li, M. Zheng, H. Xue, and H. Pang: High performance electrochemical capacitor materials focusing on nickel based materials. Inorg. Chem. Front. 3, 175–202 (2016).

    Article  CAS  Google Scholar 

  9. Y. Zhang, J. Wu, T.X. Zheng, Y.X. Zhang, and H. Liu: Binder-free supercapacitive of ultrathin Co(OH)2 nanosheets-decorated nitrogen-doped carbon nanotubes core-shell nanostructures. Mater. Technol. 31, 521–525 (2016).

    Article  CAS  Google Scholar 

  10. C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, and X.W. Lou: Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 5, 7883–7887 (2012).

    Article  CAS  Google Scholar 

  11. J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Hang, D. Chen, and G. Shen: Flexible asymmetric supercapacitors based upon Co9S8 Nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. Acs Nano 7, 5453–5462 (2013).

    Article  CAS  Google Scholar 

  12. W. Du, R. Liu, Y. Jiang, Q. Lu, Y. Fan, and F. Gao: Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J. Power Sources 227, 101–105 (2013).

    Article  CAS  Google Scholar 

  13. Y. Tan, Y. Liu, L. Kong, L. Kang, and F. Ran: Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in situ reduction method. J. Power Sources 363, 1–8 (2017).

    Article  CAS  Google Scholar 

  14. M. Huang, F. Li, F. Dong, Y.X. Zhang, and L.L. Zhang: MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3, 21380–21423 (2015).

    Article  CAS  Google Scholar 

  15. J.G. Wang, F.Y. Kang, and B.Q. Wei: Engineering of MnO2-based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 74, 51–124 (2015).

    Article  CAS  Google Scholar 

  16. Q. Qu, P. Zhang, B. Wang, Y. Chen, S. Tian, Y. Wu, and R. Holze: Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 113, 14020–14027 (2009).

    Article  CAS  Google Scholar 

  17. Z. Chen, V. Augustyn, J. Wen, Y. Zhang, M. Shen, B. Dunn, and Y. Lu: High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 23, 791–795 (2011).

    Article  CAS  Google Scholar 

  18. Y.L. Yang, K.W. Shen, Y. Liu, Y.T. Tan, X.N. Zhao, J.Y. Wu, and X.Q. Niu: Fen ran, novel hybrid nanoparticles of vanadium nitride/porous carbon as an anode material for symmetrical supercapacitor. Nano-Micro Lett. 9, 6 (2017).

    Article  CAS  Google Scholar 

  19. Y.G. Wu and F. Ran: Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors. J. Power Sources 344, 1–10 (2017).

    Article  CAS  Google Scholar 

  20. Y. Yang, L. Zhao, K. Shen, Y. Liu, X. Zhao, Y. Wu, Y. Wang, and F. Ran: Ultra-small vanadium nitride quantum dots embedded in porous carbon as high performance electrode materials for capacitive energy storage. J. Power Sources 333, 61–71 (2016).

    Article  CAS  Google Scholar 

  21. X. Hu, W. Zhang, X. Liu, Y. Mei, and Y. Huang: Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem. Soc. Rev. 44, 2376–2404 (2015).

    Article  CAS  Google Scholar 

  22. G.A. Snook, P. Kao, and A.S. Best: Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011).

    Article  CAS  Google Scholar 

  23. C.O. Baker, X. Huang, W. Nelson, and R.B. Kaner: Polyaniline nanofibers: Broadening applications for conducting polymers. Chem. Soc. Rev. 46, 1510–1525 (2017).

    Article  CAS  Google Scholar 

  24. T.Y. Liu, L. Finn, M.H. Yu, H.Y. Wang, T. Zhai, X.H. Lu, Y.X. Tong, and Y. Li: Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability. Nano Lett. 14, 2522–2527 (2014).

    Article  CAS  Google Scholar 

  25. Y.T. Tan, Y.S. Liu, L.B. Kong, L. Kang, C.A. Xu, and F. Ran: In situ doping of PANI nanocomposites by gold nanoparticles for high-performance electrochemical energy storage. J. Appl. Polym. Sci. 134, 45309 (2017).

    Article  CAS  Google Scholar 

  26. Y. Song, T.Y. Liu, X.X. Xu, D.Y. Feng, Y. Li, and X.X. Liu: Pushing the cycling stability limit of polypyrrole for supercapacitors. Adv. Funct. Mater. 25, 4626–4632 (2015).

    Article  CAS  Google Scholar 

  27. Y.T. Tan, Y.F. Zhang, L.B. Kong, L. Kang, and F. Ran: Nano-Au@PANI core–shell nanoparticles via in situ polymerization as electrode for supercapacitor. J. Alloys Compd. 722, 1–7 (2017).

    Article  CAS  Google Scholar 

  28. Y. Huang, M. Zhu, Z. Pei, Y. Huang, H. Geng, and C. Zhi: Extremely stable polypyrrole achieved via molecular ordering for highly flexible supercapacitors. ACS Appl. Mater. Interfaces 8, 2435–2440 (2016).

    Article  CAS  Google Scholar 

  29. Y.T. Tan, F. Ran, L.B. Kong, J. Liu, and L. Kang: Polyaniline nanoparticles grown on the surface of carbon microspheres aggregations for electrochemical supercapacitors. Synth. Met. 162, 114–118 (2012).

    Article  CAS  Google Scholar 

  30. Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, and S. Dai: Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011).

    Article  CAS  Google Scholar 

  31. L. Dai, D.W. Chang, J.B. Baek, and W. Lu: Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1166 (2012).

    Article  CAS  Google Scholar 

  32. A. Ghosh and Y.H. Lee: Carbon-based electrochemical capacitors. ChemSusChem 5, 480–499 (2012).

    Article  CAS  Google Scholar 

  33. C.M. Zhang, Z. Geng, M. Cai, J. Zhang, X.P. Liu, H.F. Xin, and J.X. Ma: Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake. Int. J. Hydrogen Energy 38, 9243–9250 (2013).

    Article  CAS  Google Scholar 

  34. O. Kimizuka, O. Tanaike, J. Yamashita, T. Hiraoka, D.N. Futaba, K. Hata, K. Machida, S. Suematsu, K. Tamamitsu, S. Saeki, Y. Yamada, and H. Hatori: Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes. Carbon 46, 1999–2001 (2008).

    Article  CAS  Google Scholar 

  35. H.L. Fan, F. Ran, X.X. Zhang, H.M. Song, W.X. Jing, K.W. Shen, L.B. Kong, and L. Kang: Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid–liquid phase separation and pyrolysis process. Electrochim. Acta 138, 367–375 (2014).

    Article  CAS  Google Scholar 

  36. M. Enterria, M.F.R. Pereira, J.I. Martins, and J.L. Figueiredo: Hydrothermal functionalization of ordered mesoporous carbons: The effect of boron on supercapacitor performance. Carbon 95, 72–83 (2015).

    Article  CAS  Google Scholar 

  37. H. Li, D. Yuan, C. Tang, S. Wang, J. Sun, Z. Li, T. Tang, F. Wang, H. Gong, and C. He: Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100, 151–157 (2016).

    Article  CAS  Google Scholar 

  38. T. Wei, X. Wei, Y. Gao, and H. Li: Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochim. Acta 169, 186–194 (2015).

    Article  CAS  Google Scholar 

  39. D. Kang, Q. Liu, J. Gu, Y. Su, W. Zhang, and D. Zhang: “Egg-box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano 9, 11225–11233 (2015).

    Article  CAS  Google Scholar 

  40. W. Kim, M.Y. Kang, J.B. Joo, N.D. Kim, I.K. Song, P. Kim, J.R. Yoon, and J. Yi: Preparation of ordered mesoporous carbon nanopipes with controlled nitrogen species for application in electrical double-layer capacitors. J. Power Sources 195, 2125–2129 (2010).

    Article  CAS  Google Scholar 

  41. T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, and F. Huang: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015).

    Article  CAS  Google Scholar 

  42. D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, and G.Q. Lu: Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater. 19, 1800–1809 (2009).

    Article  CAS  Google Scholar 

  43. L.L. Zhang, R. Zhou, and X.S. Zhao: Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20, 5983–5992 (2010).

    Article  CAS  Google Scholar 

  44. J. Yan, Q. Wang, T. Wei, and Z. Fan: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 1300816 (2014).

    Article  CAS  Google Scholar 

  45. Y. Wang, Y. Song, and Y. Xia: Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45, 5925–5950 (2016).

    Article  CAS  Google Scholar 

  46. Z.N. Yu, L. Tetard, L. Zhai, and J. Thomas: Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730 (2015).

    Article  CAS  Google Scholar 

  47. D. Zhou, H. Niu, H.M. Lin, X. Yang, H. Jiang, T. Zhang, Q. Wang, and F.Y. Qu: 3D interconnected networks of a ternary hierarchical carbon nanofiber/MnO2/Ni(OH)2 architecture as integrated electrodes for all-solid-state supercapacitors. RSC Adv. 6, 71882–71892 (2016).

    Article  CAS  Google Scholar 

  48. K.X. Tang, Y.P. Li, Y.J. Li, H.B. Cao, Z.S. Zhang, Y. Zhang, and J. Yang: Self-reduced VO/VOx/carbon nanofiber composite as binder-free electrode for supercapacitors. Electrochim. Acta 209, 709–718 (2016).

    Article  CAS  Google Scholar 

  49. X.J. Ma, P. Kolla, Y. Zhao, A.L. Smirnova, and H. Fong: Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance. J. Power Sources 325, 541–548 (2016).

    Article  CAS  Google Scholar 

  50. B. Wang, G. Lu, Q.P. Luo, and T.H. Wang: Free-standing porous carbon nano fiber networks from electrospinning polyimide for supercapacitors. J. Nanomater. 4305437, 1–7 (2016).

    Google Scholar 

  51. D.Z. Zhu, K. Cheng, Y.W. Wang, D.M. Sun, L.H. Gan, T. Chen, J.X. Jiang, and M.X. Liu: Nitrogen-doped porous carbons with nanofiber-like structure derived from poly(aniline-co-p-phenylenediamine) for supercapacitors. Electrochim. Acta 224, 17–24 (2017).

    Article  CAS  Google Scholar 

  52. S.K. Nataraj, K.S. Yang, and T.M. Aminabhavi: Polyacrylonitrile-based nanofibers: A state-of-the-art review. Prog. Polym. Sci. 37, 487–513 (2012).

    Article  CAS  Google Scholar 

  53. N. Yusof and A.F. Ismail: Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: A review. J. Anal. Appl. Pyrolysis 93, 1–13 (2012).

    Article  CAS  Google Scholar 

  54. G.B. Xue, J. Zhong, Y.L. Cheng, and B. Wang: Facile fabrication of cross-linked carbon nanofiber via directly carbonizing electrospun polyacrylonitrile nanofiber as high performance scaffold for supercapacitors. Electrochim. Acta 215, 29–35 (2016).

    Article  CAS  Google Scholar 

  55. K. Wei, K.O. Kim, K.H. Song, C.Y. Kang, J.S. Lee, M. Gopiraman, and I.S. Kim: Nitrogen- and oxygen-containing porous ultrafine carbon nanofiber: A highly flexible electrode material for supercapacitor. J. Mater. Sci. Technol. 33, 424–431 (2017).

    Article  CAS  Google Scholar 

  56. B.H. Kim, C.H. Kim, and D.G. Lee: Mesopore-enriched activated carbon nanofiber web containing RuO2 as electrode material for high-performance supercapacitors. J. Electroanal. Chem. 760, 64–70 (2016).

    Article  CAS  Google Scholar 

  57. K.B. Huang, Y.Y. Yao, X.W. Yang, Z.H. Chen, and M. Li: Fabrication of flexible hierarchical porous nitrogen-doped carbon nanofiber films for application in binder-free supercapacitors. Mater. Chem. Phys. 169, 1–5 (2016).

    Article  CAS  Google Scholar 

  58. Y. Saito, M. Meguro, M. Ashizawa, K. Waki, R. Yuksel, H.E. Unalan, and H. Matsumoto: Manganese dioxide nanowires on carbon nanofiber frameworks for efficient electrochemical device electrodes. RSC Adv. 7, 12351–12358 (2017).

    Article  CAS  Google Scholar 

  59. C. Liu, Y. Tan, Y. Liu, K. Shen, B. Peng, X. Niu, and F. Ran: Microporous carbon nanofibers prepared by combining electrospinning and phase separation methods for supercapacitor. J. Energy Chem. 25, 587–593 (2016).

    Article  Google Scholar 

  60. A. Shokuhfar, A. Sedghi, and R.E. Farsani: Effect of thermal characteristics of commercial and special polyacrylonitrile fibres on the fabrication of carbon fibres. Mater. Sci. Technol. 22, 1235–1239 (2006).

    Article  CAS  Google Scholar 

  61. S.L. Zhang and N. Pan: Supercapacitors performance evaluation. Adv. Energy Mater. 5, 1401401 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partly supported by the National Natural Science Foundation of China (51203071, 51463012, and 51763014), China Postdoctoral Science Foundation (2014M552509 and 2015T81064), Natural Science Funds of the Gansu Province (2015GS05123), and the Program for Hongliu Distinguished Young Scholars in Lanzhou University of Technology (J201402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fen Ran.

Additional information

These authors contributed equally to this work.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Lin, D., Liu, C. et al. Carbon nanofibers prepared by electrospinning accompanied with phase-separation method for supercapacitors: Effect of thermal treatment temperature. Journal of Materials Research 33, 1120–1130 (2018). https://doi.org/10.1557/jmr.2017.373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.373

Navigation