Skip to main content
Log in

Computational characterization of monolayer C3N: A two-dimensional nitrogen-graphene crystal

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbon–nitrogen compounds have attracted enormous attention because of their unusual physical properties and fascinating applications on various devices. Especially in two-dimension, doping of nitrogen atoms in graphene is widely believed to be an effective mechanism to improve the electronic and optoelectronic performances of graphene. In this work, using the first-principles calculations, we systematically investigate the electronic, mechanical, and optical properties of monolayer C3N, a newly synthesized two-dimensional carbon-graphene crystal. The useful results we obtained are: (i) monolayer C3N is an indirect band-gap semiconductor with the gap of 1.042 eV calculated by the accurate hybrid functional; (ii) compared with graphene, it has smaller ideal tensile strength but larger in-plane stiffness; (iii) the nonlinear effect of elasticity at large strains is more remarkable in monolayer C3N; (iv) monolayer C3N exhibits main absorption peak in visible light region and secondary peak in ultraviolet region, and the absorbing ratio between them can be effectively mediated by strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. V. Brazhkin, N. Dubrovinskaia, M. Nicol, N. Novikov, R. Riedel, V. Solozhenko, and Y. Zhao: From our readers: What does ‘harder than diamond’ mean?Nat. Mater. 3, 576 (2004).

    Article  CAS  Google Scholar 

  2. A.Y. Liu and M.L. Cohen: Prediction of new low compressibility solids. Science 245, 841 (1989).

    Article  CAS  Google Scholar 

  3. M. Zhang, Q. Wei, H. Yan, Y. Zhao, and H. Wang: A novel superhard tetragonal carbon mononitride. J. Phys. Chem. C 118, 3202 (2014).

    Article  CAS  Google Scholar 

  4. J.N. Hart, F. Claeyssens, N.L. Allan, and P.W. May: Carbon nitride: Ab initio investigation of carbon-rich phases. Phys. Rev. B 80, 174111 (2009).

    Article  CAS  Google Scholar 

  5. F. Tian, J. Wang, Z. He, Y. Ma, L. Wang, T. Cui, C. Chen, B. Liu, and G. Zou: Superhard semiconducting C3N2 compounds predicted via first-principles calculations. Phys. Rev. B 78, 235431 (2008).

    Article  CAS  Google Scholar 

  6. J. Hao, H. Liu, W. Lei, X. Tang, J. Lu, D. Liu, and Y. Li: Prediction of a superhard carbon-rich C–N compound comparable to diamond. J. Phys. Chem. C 119, 28614 (2015).

    Article  CAS  Google Scholar 

  7. É. Sandré, C.J. Pickard, and C. Colliex: What are the possible structures for CNx compounds? The example of C3N. Chem. Phys. Lett. 325, 53 (2000).

    Article  Google Scholar 

  8. Q. Hu, Q. Wu, H. Wang, J. He, and G. Zhang: First-principles studies of structural and electronic properties of layered C3N phases. Phys. Status Solidi B 249, 784 (2012).

    Article  CAS  Google Scholar 

  9. H. Dong, A.R. Oganov, Q. Zhu, and G-R. Qian: The phase diagram and hardness of carbon nitrides. Sci. Rep. 5, 9870 (2015).

    Article  CAS  Google Scholar 

  10. F. Goettmann, A. Fischer, M. Antonietti, and A. Thomas: Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel–Crafts reaction of benzene. Angew. Chem. Int. Ed. 45, 4467 (2006).

    Article  CAS  Google Scholar 

  11. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2008).

    Article  CAS  Google Scholar 

  12. S.K. Pati, T. Enoki, and C.N.R. Rao: Graphene and its Fascinating Attributes (World Scientific, Singapore, 2011).

    Book  Google Scholar 

  13. C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  14. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W-X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, and X. Bao: Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 23, 1188 (2011).

    Article  CAS  Google Scholar 

  15. L. Zhao, R. He, K.T. Rim, T. Schiros, K.S. Kim, H. Zhou, C. Gutiérrez, S.P. Chockalingam, C.J. Arguello, L. Pálová, D. Nordlund, M.S. Hybertsen, D.R. Reichman, T.F. Heinz, P. Kim, A. Pinczuk, G.W. Flynn, and A.N. Pasupathy: Visualizing individual nitrogen dopants in monolayer graphene. Science 333, 999 (2011).

    Article  CAS  Google Scholar 

  16. S. Mizuno, M. Fujita, and K. Nakao: Electronic states of graphitic heterocompounds of carbon, boron and nitrogen. Synth. Met. 71, 1869 (1995).

    Article  CAS  Google Scholar 

  17. H.J. Xiang, B. Huang, Z.Y. Li, S-H. Wei, J.L. Yang, and X.G. Gong: Ordered semiconducting nitrogen-graphene alloys. Phys. Rev. X 2, 011003 (2012).

    Google Scholar 

  18. J. Mahmood, E.K. Lee, M. Jung, D. Shin, H-J. Choi, J-M. Seo, S-M. Jung, D. Kim, F. Li, M.S. Lah, N. Park, H-J. Shin, J.H. Oh, and J-B. Baek: Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. PNAS 113, 7414 (2016).

    Article  CAS  Google Scholar 

  19. S. Yang, W. Li, C. Ye, G. Wang, H. Tian, C. Zhu, P. He, G. Ding, X. Xie, Y. Liu, Y. Lifshitz, S-T. Lee, Z. Kang, and M. Jiang: C3N—A 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties. Adv. Mater. 29, 1605625 (2017).

    Article  CAS  Google Scholar 

  20. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  21. G. Kresse and J. Furthmüller: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  22. P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  23. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  24. J. Heyd, G.E. Scuseria, and M. Ernzerhof: Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).

    Article  CAS  Google Scholar 

  25. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  26. T.C. King, P.D. Matthews, J.P. Holgado, D.A. Jefferson, R.M. Lambert, A. Alavi, and D.S. Wright: A single-source route to bulk samples of C3N and the co-evolution of graphitic carbon microspheres. Carbon 64, 6 (2013).

    Article  CAS  Google Scholar 

  27. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).

    Article  CAS  Google Scholar 

  28. F. Liu, P. Ming, and J. Li: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007).

    Article  CAS  Google Scholar 

  29. R. Kubo: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957).

    Article  Google Scholar 

  30. C.S. Wang and J. Callaway: Band structure of nickel: Spin–orbit coupling, the Fermi surface, and the optical conductivity. Phys. Rev. B 9, 4897 (1974).

    Article  CAS  Google Scholar 

  31. A.A. Mostofi, J.R. Yates, Y-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari: wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685 (2008).

    Article  CAS  Google Scholar 

  32. D. Roundy and M.L. Cohen: Ideal strength of diamond, Si, and Ge. Phys. Rev. B 64, 212103 (2001).

    Article  CAS  Google Scholar 

  33. W. Luo, D. Roundy, M.L. Cohen, and J.W. Morris, Jr.: Ideal strength of bcc molybdenum and niobium. Phys. Rev. B 66, 094110 (2002).

    Article  CAS  Google Scholar 

  34. Y.C. Cheng, Z.Y. Zhu, G.S. Huang, and U. Schwingenschlögl: Grüneisen parameter of the G mode of strained monolayer graphene. Phys. Rev. B 83, 115449 (2011).

    Article  CAS  Google Scholar 

  35. Q. Peng, L. Han, J. Lian, X. Wen, S. Liu, Z. Chen, N. Koratkar, and S. De: Mechanical degradation of graphene by epoxidation: Insights from first-principles calculations. Phys. Chem. Chem. Phys. 17, 19484 (2015).

    Article  CAS  Google Scholar 

  36. K.N. Kudin, G.E. Scuseria, and B.I. Yakobson: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406 (2001).

    Article  CAS  Google Scholar 

  37. G.N. Greaves, A.L. Greer, R.S. Lakes, and T. Rouxel: Poisson’s ratio and modern materials. Nat. Mater. 10, 823 (2011).

    Article  CAS  Google Scholar 

  38. G. Kalosakas, N.N. Lathiotakis, C. Galiotis, and K. Papagelis: In-plane force fields and elastic properties of graphene. J. Appl. Phys. 113, 134307 (2013).

    Article  CAS  Google Scholar 

  39. E. Cadelano, P.L. Palla, S. Giordano, and L. Colombo: Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 102, 235502 (2009).

    Article  CAS  Google Scholar 

  40. J. Zhou and R. Huang: Internal lattice relaxation of single-layer graphene under in-plane deformation. J. Mech. Phys. Solids 56, 1609 (2008).

    Article  CAS  Google Scholar 

  41. K.V. Zakharchenko, M.I. Katsnelson, and A. Fasolino: Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 102, 046808 (2009).

    Article  CAS  Google Scholar 

  42. Q. Wei and X. Peng: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014).

    Article  CAS  Google Scholar 

  43. I. Jasiuk, J. Chen, and M.F. Thorpe: Elastic moduli of two dimensional materials with polygonal and elliptical holes. Appl. Mech. Rev. 47, S18 (1994).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the NSF of China (Grant Nos. 11374033 and 11574029), the MOST Project of China (Grant Nos. 2014CB920903 and 2016YFA0300600), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20131101120052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanxiang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Feng, W., Guan, S. et al. Computational characterization of monolayer C3N: A two-dimensional nitrogen-graphene crystal. Journal of Materials Research 32, 2993–3001 (2017). https://doi.org/10.1557/jmr.2017.228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.228

Navigation