Skip to main content
Log in

First-principles studies of lattice dynamics and thermal properties of Mg2Si1− xSnx

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present the results of a mixed-space approach, based on first-principles calculations, to investigate phonon dispersions and thermal properties of Mg2Si and Mg2Sn, including the bulk modulus, Grüneisen parameter, heat capacity, and Debye temperature. It is shown that good agreements are obtained between the calculated results and available experimental data for both phonon dispersions and thermal properties. The phonon dispersions are accurately calculated compared with experimental data due to the high-quality description of LO–TO splitting and transverse acoustic branches along the Γ- K- X symmetry line. We also calculate the heat capacity CP and Debye temperature of Mg2Si1− xSnx alloys (x = 0.375, 0.5, 0.625, 0.875). The CP values at high temperature range from 0.5 to 0.7 J/g/K and ΘD values at room temperature from 332 to 384 K as the Sn content decreases from 0.875 to 0.375.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3

Similar content being viewed by others

References

  1. H.J. Goldsmid: Applications of Thermoelectricity (Methuen Monograph, London, 1960); p. 93.

    Google Scholar 

  2. H.J. Goldsmid: Thermoelectric Refrigeration (Plenum Press, New York, 1964); p. 6.

    Book  Google Scholar 

  3. Y.Z. Pei, X.Y. Shi, A.D. LaLonde, H. Wang, L.D. Chen, and G.J. Snyder: Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66 (2011).

    Article  CAS  Google Scholar 

  4. Y.Z. Pei, H. Wang, and G.J. Snyder: Band engineering of thermoelectric materials. Adv. Mater. 24, 6125 (2012).

    Article  CAS  Google Scholar 

  5. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008).

    Article  CAS  Google Scholar 

  6. G.D. Mahan and J.O. Sofo: The best thermoelectric. Proc. Natl. Acad. Sci. U. S. A. 93, 7436 (1996).

    Article  CAS  Google Scholar 

  7. C.M. Jaworski, B. Wiendlocha, V. Jovovic, and J.P. Heremans: Combining alloy scattering of phonons and resonant electronic levels to reach a high thermoelectric figure of merit in PbTeSe and PbTeS alloys. Energy Environ. Sci. 4, 4155 (2011).

    Article  CAS  Google Scholar 

  8. V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva: Thermoelectric Handbook, Macro to Nano, Vols. 29 and 31 (CRC Taylor & Francis, Boca Raton, 2006).

    Google Scholar 

  9. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov: Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006).

    Article  CAS  Google Scholar 

  10. W. Liu, X.F. Tang, H. Li, J. Sharp, X.Y. Zhou, and C. Uher: Optimized thermoelectric properties of Sb-doped Mg2(1+z)Si0.5−ySn0.5Sby through adjustment of the Mg content. Chem. Mater. 23, 5256 (2011).

    Article  CAS  Google Scholar 

  11. W. Liu, X.J. Tan, K. Yin, H.J. Liu, X.F. Tang, J. Shi, Q.J. Zhang, and C. Uher: Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. Lett. 108, 166601 (2012).

    Article  CAS  Google Scholar 

  12. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt: High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl. Phys. Lett. 93, 102109 (2008).

    Article  CAS  Google Scholar 

  13. Z.L. Du, T.J. Zhu, Y. Chen, J. He, H.L. Gao, G.Y. Jiang, T.M. Tritt, and X.B. Zhao: Roles of interstitial Mg in improving thermoelectric properties of Sb-doped Mg2Si0.4Sn0.6 solid solutions. J. Mater. Chem. 22, 6838 (2012).

    Article  CAS  Google Scholar 

  14. H.L. Gao, T.J. Zhu, X.X. Liu, L.X. Chen, and X.B. Zhao: Flux synthesis and thermoelectric properties of eco-friendly Sb doped Mg2Si0.5Sn0.5 solid solutions for energy harvesting. J. Mater. Chem. 21, 5933 (2011).

    Article  CAS  Google Scholar 

  15. X.H. Liu, T.J. Zhu, H. Wang, L.P. Hu, H.H. Xie, G.Y. Jiang, G.J. Snyder, and X.B. Zhao: Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Adv. Energy Mater. 3, 1238 (2013).

    Article  CAS  Google Scholar 

  16. G.Y. Jiang, J. He, T.J. Zhu, C.G. Fu, X.H. Liu, L.P. Hu, and X.B. Zhao: High performance Mg2(Si,Sn) solid solutions: A point defect chemistry approach to enhancing thermoelectric properties. Adv. Funct. Mater. 24, 3776 (2014).

    Article  CAS  Google Scholar 

  17. P. Baranek, J. Schamps, and I. Noiret: Ab initio studies of electronic structure, phonon modes, and elastic properties of Mg2Si. J. Phys. Chem. B 101, 9147 (1997).

    Article  CAS  Google Scholar 

  18. P. Boulet, M.J. Verstraete, J.P. Crocombette, M. Briki, and M.C. Record: Electronic properties of the Mg2Si thermoelectric material investigated by linear-response density-functional theory. Comput. Mater. Sci. 50, 847 (2011).

    Article  CAS  Google Scholar 

  19. J-i. Tani and H. Kido: First-principles and experimental studies of impurity doping into Mg2Si. Intermetallics 16, 418 (2008).

    Article  CAS  Google Scholar 

  20. X.J. Tan, W. Liu, H.J. Liu, J. Shi, X.F. Tang, and C. Uher: Multiscale calculations of thermoelectric properties of n-type Mg2Si1−xSnx solid solutions. Phys. Rev. B 85, 205212 (2012).

    Article  CAS  Google Scholar 

  21. P. Baranek and J. Schamps: Influence of electronic correlation on structural, dynamic, and elastic properties of Mg2Si. J. Phys. Chem. B 103, 2601 (1999).

    Article  CAS  Google Scholar 

  22. J-i. Tani and H. Kido: Lattice dynamics of Mg2Si and Mg2Ge compounds from first-principles calculations. Comput. Mater. Sci. 42, 531 (2008).

    Article  CAS  Google Scholar 

  23. S. Duman, H.M. Tutuncu, S. Bagci, and G.P. Srivastava: Ab initio determination of structural and dynamical properties of Mg2Sn. In Six International Conference of the Balkan Physical Union, Vol. 899, S.A. Cetin and I. Hikmet eds. (American Institute of Physics, New York, NY, 2007); p. 247.

    Google Scholar 

  24. S. Ganeshan, S.L. Shang, Y. Wang, and Z.K. Liu: Temperature dependent elastic coefficients of Mg2X (X = Si, Ge, Sn, Pb) compounds from first-principles calculations. J. Alloys Compd. 498, 191 (2010).

    Article  CAS  Google Scholar 

  25. P. Pandit and S.P. Sanyal: First principles study of electronic, elastic and lattice dynamical properties of Mg2X (X= Si, Ge and Sn) compounds. Indian J. Pure Appl. Phys. 49, 692 (2011).

    CAS  Google Scholar 

  26. W. Li, L. Lindsay, D.A. Broido, D.A. Stewart, and N. Mingo: Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles. Phys. Rev. B 86, 174307 (2012).

    Article  CAS  Google Scholar 

  27. H.F. Wang, W.G. Chu, and H. Jin: Theoretical study on thermoelectric properties of Mg2Si and comparison to experiments. Comput. Mater. Sci. 60, 224 (2012).

    Article  CAS  Google Scholar 

  28. H.F. Wang, H. Jin, W.G. Chu, and Y.J. Guo: Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method. J. Alloys Compd. 499, 68 (2010).

    Article  CAS  Google Scholar 

  29. Y. Wang, S.L. Shang, Z.K. Liu, and L.Q. Chen: Mixed-space approach for calculation of vibration-induced dipole-dipole interactions. Phys. Rev. B 85, 224303 (2012).

    Article  CAS  Google Scholar 

  30. Y. Wang, L.Q. Chen, and Z.K. Liu: YPHON: A package for calculating phonons of polar materials. Comput. Phys. Commun. 185, 2950 (2014).

    Article  CAS  Google Scholar 

  31. G. Kresse and J. Hafner: Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  32. G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  33. J.P. Perdew and A. Zunger: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  34. P.E. Blochl, O. Jepsen, and O.K. Andersen: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223 (1994).

    Article  CAS  Google Scholar 

  35. M. Gajdos, K. Hummer, G. Kresse, J. Furthmuller, and F. Bechstedt: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006).

    Article  CAS  Google Scholar 

  36. W. Cochran and R.A. Cowley: Dielectric constants and lattice vibrations. J. Phys. Chem. Solids 23, 447 (1962).

    Article  CAS  Google Scholar 

  37. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).

    Article  CAS  Google Scholar 

  38. Y. Wang, Z.K. Liu, and L.Q. Chen: Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta Mater. 52, 2665 (2004).

    Article  CAS  Google Scholar 

  39. S-L. Shang, Y. Wang, D. Kim, and Z-K. Liu: First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al. Comput. Mater. Sci. 47, 1040 (2010).

    Article  CAS  Google Scholar 

  40. Y. Wang, J.J. Wang, W.Y. Wang, Z.G. Mei, S.L. Shang, L.Q. Chen, and Z.K. Liu: A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. J. Phys.: Condens. Matter 22, 202201 (2010).

    CAS  Google Scholar 

  41. N.D. Mermin and N.W. Achcroft: Solid State Physics (Harcourt College Publishers, Philadelphia, 1976); p. 457.

    Google Scholar 

  42. M.T. Hutchings, T.W.D. Farley, M.A. Hackett, W. Hayes, S. Hull, and U. Steigenberger: Neutron-scattering investigation of lattice-dynamics and thermally induced disorder in the antifluorite Mg2Si. Solid State Ionics 28, 1208 (1988).

    Article  Google Scholar 

  43. C.J. Buchenauer and M. Cardona: Raman scattering in Mg2Si, Mg2Ge and Mg2Sn. Phys. Rev. B 3, 2504 (1971).

    Article  Google Scholar 

  44. D. McWilliams and D.W. Lynch: Infrared reflectivities of magnesium silicide, germanide, and stannide. Phys. Rev. 130, 2248 (1963).

    Article  CAS  Google Scholar 

  45. R.J. Kearney, T.G. Worlton, and R.E. Schmunk: Lattice dynamics of magnesium stannide at room temperature. J. Phys. Chem. Solids 31, 1085 (1970).

    Article  CAS  Google Scholar 

  46. R. Geick, W.J. Hakel, and C.H. Perry: Temperature dependence of far-infrared reflectivity of magnesium stannide. Phys. Rev. 148, 824 (1966).

    Article  CAS  Google Scholar 

  47. D. Bessas, R.E. Simon, K. Friese, M. Koza, and R.P. Hermann: Lattice dynamics in intermetallic Mg2Ge and Mg2Si. J. Phys.: Condens. Matter 26, 485401 (2014).

    CAS  Google Scholar 

  48. B.C. Gerstein, F.J. Jelinek, M. Habensch, W.D. Shickell, J.R. Mullaly, and P.L. Chung: Thermal study of group 2–4 semiconductors-lattice heat capacities and free energies of formation. Heat capacity of Mg2Si from 15 degrees–300 degrees K. J. Chem. Phys. 47, 2109 (1967).

    Article  CAS  Google Scholar 

  49. F.J. Jelinek, W.D. Shickell, and B.C. Gerstein: Thermal study of group 2–4 semiconductors.2.Heat capacity of Mg2Sn in range 5–300 degrees K. J. Phys. Chem. Solids 28, 267 (1967).

    Article  CAS  Google Scholar 

  50. W.B. Whitten, P.L. Chung, and G.C. Danielson: Elastic constants and lattice vibration frequencies of Mg2Si. J. Phys. Chem. Solids 26, 49 (1965).

    Article  CAS  Google Scholar 

  51. Y. Wang, J.E. Saal, P. Wu, J. Wang, S. Shang, Z-K. Liu, and L-Q. Chen: First-principles lattice dynamics and heat capacity of BiFeO3. Acta Mater. 59, 4229 (2011).

    Article  CAS  Google Scholar 

  52. O. Delaire, A.F. May, M.A. McGuire, W.D. Porter, M.S. Lucas, M.B. Stone, D.L. Abernathy, V.A. Ravi, S.A. Firdosy, and G.J. Snyder: Phonon density of states and heat capacity of La3−xTe4. Phys. Rev. B 80, 184302 (2009).

    Article  CAS  Google Scholar 

  53. L.B.o.O. Madelung ed.: Numerical Data and Functional Relationships in Science and Technology, GroupIII, Vol. 17e, Springer-Verlag, Berlin.

Download references

ACKNOWLEDGMENTS

We greatly appreciate low temperature measurement of CP by Mr. Tiansong Zhang and Prof. Xun Shi at Shanghai Institute of Ceramics, Chinese Academy of Science. Most of the research presented in this study was performed during Ms. X.H. Liu’s visit to Penn State with her visit supported by the School of Materials Science and Engineering at Zhejiang University through an International Student Exchange Program. The work was also supported by the National Basic Research Program of China (2013CB632503), the National Natural Science Foundation of China (51171171 and 51271165), the Program for New Century Excellent Talents in University (NCET-12-0495), and the US DOE Basic Sciences under Grant No. DOE DE-FG02-07ER46417 (Y.W. and L. Chen).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Wang or Xinbing Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, Y., Sofo, J.O. et al. First-principles studies of lattice dynamics and thermal properties of Mg2Si1− xSnx. Journal of Materials Research 30, 2578–2584 (2015). https://doi.org/10.1557/jmr.2015.229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.229

Navigation