Skip to main content
Log in

Characterizing mechanical behavior of atomically thin films: A review

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Atomically thin films, such as graphene, graphene oxide, hexagonal-boron nitride (h-BN), and molybdenum disulfide (MoS2), have attracted intensive studies to explore their properties and potential applications as next generation materials due to their outstanding mechanical, electrical, thermal, and optical properties. The study of the mechanical behavior of this class of materials is in particular interesting as it not only physically determines the potential application fields where these materials can be utilized but also has revealed unique mechanical size effects and phenomena. Researchers have been studying the mechanical properties such as elastic modulus, strength, friction, and fracture behavior of atomically thin films for over a decade now. Here, we review recent results of the mechanical characterization and understanding of this class of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff: Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  CAS  Google Scholar 

  3. S. Watcharotone, D.A. Diking, S. Stankovich, R. Pinery, I. Jung, G.H.B. Dommett, G. Evmenenko, S-E. Wu, S-F. Chen, C-P. Liu, S.T. Nguyen, and R.S. Ruoff: Graphene-silica composite thin films as transparent conductors. Nano Lett. 7, 1888–1892 (2007).

    Article  CAS  Google Scholar 

  4. G. Eda and M. Chhowalla: Graphene-based composite thin films for electronics. Nano Lett. 9, 814–818 (2009).

    Article  CAS  Google Scholar 

  5. E.J. Sandoz-Rosado, O.A. Tertuliano, and E.J. Terrell: An atomistic study of the abrasive wear and failure of graphene sheets when used as a solid lubricant and a comparison to diamond-like-carbon coatings. Carbon 50, 4078–4084 (2012).

    Article  CAS  Google Scholar 

  6. K-S. Kim, H-J. Lee, C. Lee, S-K. Lee, H. Jang, J-H. Ahn, J-H. Kim, and H-J. Lee: Chemical vapor deposition-grown graphene: The thinnest solid lubricant. ACS Nano 5, 5107–5114 (2011).

    Article  CAS  Google Scholar 

  7. P. Sungjin, A. Jinho, S. Ji Won, and R.S. Ruoff: Graphene-based actuators. Small 6, 210–212 (2010).

    Article  CAS  Google Scholar 

  8. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, and J. Hone: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  9. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).

    Article  CAS  Google Scholar 

  10. N. Li, Z.P. Chen, W.C. Ren, F. Li, and H.M. Cheng: Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U.S.A. 109, 17360–17365 (2012).

    Article  CAS  Google Scholar 

  11. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, J.H. Ahn, P. Kim, J.Y. Choi, and B.H. Hong: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  CAS  Google Scholar 

  12. X. Meng, X-Q. Yang, and X. Sun: Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 24, 3589–3615 (2012).

    Article  CAS  Google Scholar 

  13. L. Ci, L. Song, C.H. Jin, D. Jariwala, D.X. Wu, Y.J. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, and P.M. Ajayan: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010).

    Article  CAS  Google Scholar 

  14. K.P. Loh, Q.L. Bao, G. Eda, and M. Chhowalla: Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010).

    Article  CAS  Google Scholar 

  15. C. Lee, X.D. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  Google Scholar 

  16. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  17. P. Sutter: Epitaxial graphene: How silicon leaves the scene. Nat. Mater. 8, 171–172 (2009).

    Article  CAS  Google Scholar 

  18. L. Tao, J. Lee, M. Holt, H. Chou, S.J. McDonnell, D.A. Ferrer, M.G. Babenco, R.M. Wallace, S.K. Banerjee, R.S. Ruoff, and D. Akinwande: Uniform wafer-scale chemical vapor deposition of graphene on evaporated Cu (111) film with quality comparable to exfoliated monolayer. J. Phys. Chem. C 116, 24068–24074 (2012).

    Article  CAS  Google Scholar 

  19. S. Park and R.S. Ruoff: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009).

    Article  CAS  Google Scholar 

  20. A.K. Geim: Graphene: Status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  21. S.Y. Zhou, G.H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.H. Lee, F. Guinea, A.H. Castro Neto, and A. Lanzara: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770–775 (2007).

    Article  CAS  Google Scholar 

  22. H.J. Park, J. Meyer, S. Roth, and V. Skákalová: Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 1088–1094 (2010).

    Article  CAS  Google Scholar 

  23. G-H. Lee, R.C. Cooper, S.J. An, S. Lee, A. van der Zande, N. Petrone, A.G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J.W. Kysar, and J. Hone: High-strength chemical-vapor–deposited graphene and grain boundaries. Science 340, 1073–1076 (2013).

    Article  CAS  Google Scholar 

  24. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu: Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).

    Article  CAS  Google Scholar 

  25. W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, J.A. Sung, M. Stoller, J. An, D. Chen, and R.S. Ruoff: Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

    Article  CAS  Google Scholar 

  26. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 3906 (2010).

    Article  CAS  Google Scholar 

  27. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  28. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  Google Scholar 

  29. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi: Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010).

    Article  CAS  Google Scholar 

  30. Y. Gao, W. Ren, T. Ma, Z. Liu, Y. Zhang, W-B. Liu, L-P. Ma, X. Ma, and H-M. Cheng: Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS Nano 7, 5199–5206 (2013).

    Article  CAS  Google Scholar 

  31. C. Gómez-Navarro, M. Burghard, and K. Kern: Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008).

    Article  CAS  Google Scholar 

  32. J.W. Suk, R.D. Piner, J. An, and R.S. Ruoff: Mechanical properties of monolayer graphene oxide. ACS Nano 4, 6557–6564 (2010).

    Article  CAS  Google Scholar 

  33. H.D. Espinosa, B.C. Prorok, and B. Peng: Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52, 667–689 (2004).

    Article  CAS  Google Scholar 

  34. P.Y. Huang, C.S. Ruiz-Vargas, A.M. van der Zande, W.S. Whitney, M.P. Levendorf, J.W. Kevek, S. Garg, J.S. Alden, C.J. Hustedt, Y. Zhu, J. Park, P.L. McEuen, and D.A. Muller: Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  CAS  Google Scholar 

  35. C.S. Ruiz-Vargas, H.L.L. Zhuang, P.Y. Huang, A.M. van der Zande, S. Garg, P.L. McEuen, D.A. Muller, R.G. Hennig, and J. Park: Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 11, 2259–2263 (2011).

    Article  CAS  Google Scholar 

  36. Ç.Ö. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, and A. Zettl: Graphene at the edge: Stability and dynamics. Science 323, 1705–1708 (2009).

    Article  CAS  Google Scholar 

  37. S.A. Joyce and J.E. Houston: A new force sensor incorporating force-feedback control for interfacial force microscopy. Rev. Sci. Instr. 62, 710–715 (1991).

    Article  CAS  Google Scholar 

  38. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    Article  CAS  Google Scholar 

  39. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, and P.M. Ajayan: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).

    Article  CAS  Google Scholar 

  40. A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. van der Zant, N. Agrait, and G. Rubio-Bollinger: Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772 (2012).

    Article  CAS  Google Scholar 

  41. T. Filleter, J.L. McChesney, A. Bostwick, E. Rotenberg, K.V. Emtsev, T. Seyller, K. Horn, and R. Bennewitz: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102, 086102 (2009).

    Article  CAS  Google Scholar 

  42. C. Lee, Q.Y. Li, W. Kalb, X.Z. Liu, H. Berger, R.W. Carpick, and J. Hone: Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010).

    Article  CAS  Google Scholar 

  43. J. Ou, J. Wang, S. Liu, B. Mu, J. Ren, H. Wang, and S. Yang: Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir 26, 15830–15836 (2010).

    Article  CAS  Google Scholar 

  44. Z.Q. Wei, D.B. Wang, S. Kim, S.Y. Kim, Y.K. Hu, M.K. Yakes, A.R. Laracuente, Z.T. Dai, S.R. Marder, C. Berger, W.P. King, W.A. de Heer, P.E. Sheehan, and E. Riedo: Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010).

    Article  CAS  Google Scholar 

  45. K. Kim, V.I. Artyukhov, W. Regan, Y.Y. Liu, M.F. Crommie, B.I. Yakobson, and A. Zettl: Ripping graphene: Preferred directions. Nano Lett. 12, 293–297 (2012).

    Article  CAS  Google Scholar 

  46. T. Zhang, X.Y. Li, S. Kadkhodaei, and H.J. Gao: Flaw insensitive fracture in nanocrystalline graphene. Nano Lett. 12, 4605–4610 (2012).

    Article  CAS  Google Scholar 

  47. J.S. Kim, T. LaGrange, B.W. Reed, M.L. Taheri, M.R. Armstrong, W.E. King, N.D. Browning, and G.H. Campbell: Imaging of transient structures using nanosecond in situ TEM. Science 321, 1472–1475 (2008).

    Article  CAS  Google Scholar 

  48. Z. Yong, L. Xinyu, R. Changhai, Z. Yan Liang, D. Lixin, and S. Yu: Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device. J. Microelectromech. Syst. 20, 959–967 (2011).

    Article  CAS  Google Scholar 

  49. J. Li, Y. Zhang, S. To, L. You, and Y. Sun: Effect of nanowire number, diameter, and doping density on Nano-FET biosensor sensitivity. ACS Nano 2011, 5, 6661–6668 (2011).

    Article  CAS  Google Scholar 

  50. H.D. Espinosa, R.A. Bernal, and T. Filleter: In situ TEM electromechanical testing of nanowires and nanotubes. Small 8, 3233–3252 (2012).

    Article  CAS  Google Scholar 

  51. K.H. Lee, H-J. Shin, J. Lee, I-Y. Lee, G-H. Kim, J-Y. Choi, and S-W. Kim: Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 12, 714–718 (2012).

    Article  CAS  Google Scholar 

  52. L. Nikolova, T. LaGrange, B.W. Reed, M.J. Stern, N.D. Browning, G.H. Campbell, J.C. Kieffer, B.J. Siwick, and F. Rosei: Nanocrystallization of amorphous germanium films observed with nanosecond temporal resolution. Appl. Phys. Lett. 97, 203102–203103 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Sun or Tobin Filleter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, C., Sun, Y. & Filleter, T. Characterizing mechanical behavior of atomically thin films: A review. Journal of Materials Research 29, 338–347 (2014). https://doi.org/10.1557/jmr.2013.339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.339

Navigation