Skip to main content
Log in

Porosity and composition dependence on electrical and piezoresistive properties of thermoplastic polyurethane nanocomposites

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development and characterization of pressure sensing porous nanocomposites are reported here. A thermoplastic polyurethane (TPU) was chosen as an elastomeric matrix, which was reinforced with multiwall carbon nanotubes (MWNTs) by high shear twin screw extrusion mixing. Porosity was introduced to the composites through the phase separation of a single TPU-carbon-dioxide gas solution. Interactions between MWNT and TPU were elucidated through calorimetry, gravimetric decomposition, conductivity measurements, and microstructure imaging. The piezoresistance (pressure–resistance) behavior of the nanocomposites was investigated and found to be dependent on MWNT concentration and nanocomposite microstructure. Mechanisms of piezoresistance in solid and porous nanocomposites are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

Similar content being viewed by others

References

  1. O. Breuer and U. Sundararaj: Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 25, 630–645 (2004).

    Article  CAS  Google Scholar 

  2. J.N. Coleman, U. Khan, W.J. Blau, and Y.K. Gun’ko: Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006).

    Article  CAS  Google Scholar 

  3. P.J.F. Harris: Carbon nanotube composites. Int. Mater. Rev. 49, 31–43 (2004).

    Article  CAS  Google Scholar 

  4. C. Li, E.T. Thostenson, and T. Chou: Sensors and actuators based on carbon nanotubes and their composites: A review. Compos. Sci. Technol. 68, 1227–1249 (2008).

    Article  CAS  Google Scholar 

  5. K. Kobashi, T. Villmow, T. Andres, and P. Pötschke: Liquid sensing of melt-processed poly(lactic acid)/multi-walled carbon nanotube composite films. Sens. Actuators, B 134, 787–795 (2008).

    Article  CAS  Google Scholar 

  6. N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga: Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48, 680–687 (2010).

    Article  CAS  Google Scholar 

  7. Y. Li, L. Zhao, and H. Shimizu: Electrically conductive polymeric materials with high stretchability and excellent elasticity by a surface coating method. Macromol. Rapid Commun. 32, 289–294 (2011).

    Article  CAS  Google Scholar 

  8. Y. Zhou, B. He, W. Zhou, J. Huang, X. Li, B. Wu, and H. Li: Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim. Acta 49, 257–262 (2004).

    Article  CAS  Google Scholar 

  9. M. Tahhan, V. Truong, G.M. Spinks, and G.G. Wallace: Carbon nanotube and polyaniline composite actuators. Smart Mater. Struct. 12, 626–632 (2003).

    Article  CAS  Google Scholar 

  10. J. Shi, Z. Guo, B. Zhan, H. Luo, Y. Li, and D. Zhu: Actuator based on MWNT/PVA hydrogels. J. Phys. Chem. B 109, 14789–14791 (2005).

    Article  CAS  Google Scholar 

  11. C. Bartholome, A. Derre, O. Roubeau, C. Zakri, and P. Poulin: Electromechanical properties of nanotube-PVA composite actuator bimorphs. Nanotechnology 19, 325501 (2008).

    Article  CAS  Google Scholar 

  12. A. Allaoui, S. Bai, H.M. Cheng, and J.B. Bai: Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62, 1993–1998 (2002).

    Article  CAS  Google Scholar 

  13. E. Bekyarova, E.T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, H.T. Hahn, T-W. Chou, M.E. Itkis, and R.C. Haddon: Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23, 3970–3974 (2007).

    Article  CAS  Google Scholar 

  14. M.B. Saeed and M. Zhan: Adhesive strength of nano-size particles filled thermoplastic polyimides. Part-I: Multi-walled carbon nano-tubes (MWNT)-polyimide composite films. Int. J. Adhes. Adhes. 27, 306–318 (2007).

    Article  CAS  Google Scholar 

  15. B. Yurdumakan, N.R. Raravikar, P.M. Ajayan, and A. Dhinojwala: Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem. Commun. 30, 3799–3801 (2005).

    Article  CAS  Google Scholar 

  16. J.G. Webster: Tactile Sensors for Robotics and Medicine (John Wiley and Sons, New York, NY, 1988).

    Google Scholar 

  17. A.C.H. Rowe, A. Donoso-Barrera, C. Renner, and S. Arscott: Giant room-temperature piezoresistance in a metal-silicon hybrid structure. Phys. Rev. Lett. 100, 145501 (2008).

    Article  CAS  Google Scholar 

  18. D. Bloor, K. Donnelly, P.J. Hands, P. Laughlin, and D. Lussey: A metal-polymer composite with unusual properties. J. Phys. D: Appl. Phys. 38, 2851–2860 (2005).

    Article  CAS  Google Scholar 

  19. W. Bauhofer and J.Z. Kovacs: A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009).

    Article  CAS  Google Scholar 

  20. F. Carpi and D. De Rossi: Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Trans. Inf. Technol. Biomed. 9, 295–318 (2005).

    Article  Google Scholar 

  21. J.R. Bautista-Quijano, F. Aviles, J.O. Aguilar, and A. Tapia: Strain sensing capabilities of a piezoresistive MWCNT-polysulfone film. Sens. Actuators, A 159, 135–140 (2010).

    Article  CAS  Google Scholar 

  22. K.J. Loh, J.P. Lynch, B.S. Shim, and N.A. Kotov: Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors. J. Intell. Mater. Syst. Struct. 19, 747–764 (2008).

    Article  CAS  Google Scholar 

  23. N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga: Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56, 2929–2936 (2008).

    Article  CAS  Google Scholar 

  24. M. Knite, V. Tupureina, A. Fuith, J. Zavickis, and V. Teteris: Polyisoprene-multi-wall carbon nanotube composites for sensing strain. Mater. Sci. Eng., C 27, 1125–1128 (2007).

    Article  CAS  Google Scholar 

  25. M.H.G. Wichmann, S.T. Buschhorn, J. Gehrmann, and K. Schulte: Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load. Phys. Rev. B: Condens. Matter 80, 245437 (2009).

    Article  CAS  Google Scholar 

  26. L. Chen, G. Chen, and L. Lu: Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites. Adv. Funct. Mater. 17, 898–904 (2007).

    Article  CAS  Google Scholar 

  27. N. Stubler, J. Fritzsche, and M. Kluppel: Mechanical and electrical analysis of carbon black networking in elastomers under strain. Polym. Eng. Sci. 51, 1206–1217 (2011).

    Article  CAS  Google Scholar 

  28. J. Lu, M. Lu, A. Bermak, and Y-K. Lee: Study of piezoresistance effect of carbon nanotube-PDMS composite materials for nanosensors. (IEEE Computer Society 7th International Conference on Nanotechnology, August 2–5, 2007; Hong Kong, China).

  29. J. Hwang, J. Jang, K. Hong, K.N. Kim, J.H. Han, K. Shin, and C.E. Park: Poly(3-hexylthiophene) wrapped carbon nanotube/poly(dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon 49, 106–110 (2011).

    Article  CAS  Google Scholar 

  30. Z. Dang, M. Jiang, D. Xie, S. Yao, L. Zhang, and J. Bai: Supersensitive linear piezoresistive property in carbon nanotubes-silicone rubber nanocomposites. J. Appl. Phys. 104, 024114 (2008).

    Article  CAS  Google Scholar 

  31. D. Klempner and K.C. Frisch: Handbook of Polymeric Foams and Foam Technology (Oxford University Press, New York, NY, 1991).

    Google Scholar 

  32. W. Strauss and N.A. D'Souza: Supercritical CO2 processed polystyrene nanocomposite foams. J. Cell. Plast. 40, 229–241 (2004).

    Article  CAS  Google Scholar 

  33. R. Rizvi, J. Kim, and H. Naguib: Synthesis and characterization of novel low density polyethylene-multiwall carbon nanotube porous composites. Smart Mater. Struct. 18, 104002 (2009).

    Article  CAS  Google Scholar 

  34. K. Matsunaga, K. Sato, M. Tajima, and Y. Yoshida: Gas permeability of thermoplastic polyurethane elastomers. Polym. J. 37, 413–417 (2005).

    Article  CAS  Google Scholar 

  35. S. Ito, K. Matsunaga, M. Tajima, and Y. Yoshida: Generation of microcellular polyurethane with supercritical carbon dioxide. J. Appl. Polym. Sci. 106, 3581–3586 (2007).

    Article  CAS  Google Scholar 

  36. H.E. Naguib, C.B. Park, N. Reichelt, and U. Panzer: Strategies for achieving ultra low-density polypropylene foams. Polym. Eng. Sci. 42, 1481–1492 (2002).

    Article  CAS  Google Scholar 

  37. J. Shen, C. Zeng, and L.J. Lee: Synthesis of polystyrene-carbon nanofibers nanocomposite foams. Polymer 46, 5218–5224 (2005).

    Article  CAS  Google Scholar 

  38. R. Rizvi, O. Khan, and H.E. Naguib: Development and characterization of solid and porous polylactide-multiwall carbon nanotube composites. Polym. Eng. Sci. 51, 43–53 (2011).

    Article  CAS  Google Scholar 

  39. E. Barsoukov and J.R. Macdonald. Impedance Spectroscopy: Theory, Experiment, and Applications (John Wiley and Sons, Hoboken, NJ, 2005).

    Book  Google Scholar 

  40. P. Zhihua, P. Jingcui, P. Yanfeng, O. Yangyu, and N. Yantao: Complex permittivity and microwave absorption properties of carbon nanotubes/polymer composite: A numerical study. Phys. Lett. A 372, 3714–3718 (2008).

    Article  CAS  Google Scholar 

  41. O.T. Ikkala, J. Laakso, K. Vakiparta, E. Virtanen, H. Ruohonen, H. Jarvinen, T. Taka, P. Passiniemi, and J. Osterholm: Counter-ion induced processibility of polyaniline: Conducting melt processible polymer blends. Synth. Met. 69, 97–100 (1995).

    Article  CAS  Google Scholar 

  42. A. Pud, N. Ogurtsov, A. Korzhenko, and G. Shapoval: Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog. Polym. Sci. 28, 1701–1753 (2003).

    Article  CAS  Google Scholar 

  43. F. Kremer and A. Schonhals: Broadband Dielectric Spectroscopy (Springer Verlag, Berlin, Germany, 2003).

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge assistance of Jonathan Yu and Dan Grozea (both of Material Science and Engineering, University of Toronto) with electrical and piezoresistance testing. Financial support for this study is provided by Natural Science and Engineering Research Council (Canada), Canada Research Chairs Program, Canada Foundation for Innovation, and the Ontario Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Naguib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizvi, R., Naguib, H. Porosity and composition dependence on electrical and piezoresistive properties of thermoplastic polyurethane nanocomposites. Journal of Materials Research 28, 2415–2425 (2013). https://doi.org/10.1557/jmr.2013.218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.218

Navigation