Skip to main content
Log in

The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp3 fraction, a relatively thicker layer (bulk film) of constant sp3 content, and an ultrathin surface layer rich in sp2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. J. Robertson: Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129 (2002).

    Article  Google Scholar 

  2. O.R. Monteiro: Thin film synthesis by energetic condensation. Annu. Rev. Mater. Res. 31, 111 (2001).

    Article  CAS  Google Scholar 

  3. I.G. Brown: Cathodic arc deposition of films. Annu. Rev. Mater. Sci. 28, 243 (1998).

    Article  CAS  Google Scholar 

  4. A.A. Voevodin and M.S. Donley: Preparation of amorphous diamond-like carbon by pulsed laser deposition: A critical review. Surf. Coat. Technol. 82, 199 (1996).

    Article  CAS  Google Scholar 

  5. M.K. Fung, K.H. Lai, C.Y. Chan, I. Bello, C.S. Lee, S.T. Lee, D.S. Mao, and X. Wang: Mechanical properties and corrosion studies of amorphous carbon on magnetic disks prepared by ECR plasma technique. Thin Solid Films 368, 198 (2000).

    Article  CAS  Google Scholar 

  6. R. Hauert: An overview on the tribological behavior of diamond-like carbon in technical and medical applications. Tribol. Int. 37, 991 (2004).

    Article  CAS  Google Scholar 

  7. A. Erdemir and C. Donnet: Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D: Appl. Phys. 39, R311 (2006).

    Article  CAS  Google Scholar 

  8. H.-S. Zhang and K. Komvopoulos: Synthesis of ultrathin carbon films by direct current filtered cathodic vacuum arc. J. Appl. Phys. 105, 083305 (2009).

    Article  Google Scholar 

  9. J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin. Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B 54, 8064 (1996).

    Article  Google Scholar 

  10. N. Yasui, H. Inaba, K. Furusawa, M. Saito, and N. Ohtake: Characterization of head overcoat for 1 Tb/in2 magnetic recording. IEEE Trans. Magn. 45, 805 (2009).

    Article  CAS  Google Scholar 

  11. J. Zhu, J. Han, X. Han, H.I. Schlaberg, and J. Wang: sp3-rich deposition conditions and growth mechanism of tetrahedral amorphous carbon films deposited using filtered arc. J. Appl. Phys. 104, 013512 (2008).

    Article  Google Scholar 

  12. A.C. Ferrari and J. Robertson: Raman spectroscopy of amorphous, nanosrtructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. London, Ser. A 362, 2477 (2004).

    Article  CAS  Google Scholar 

  13. A.C. Ferrari and J. Robertson: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).

    Article  CAS  Google Scholar 

  14. D.S. Knight and W.B. White: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385 (1989).

    Article  CAS  Google Scholar 

  15. S. Oswald and R. Reiche: Binding state information from XPS depth profiling: Capabilities and limits. Appl. Surf. Sci. 179, 307 (2001).

    Article  CAS  Google Scholar 

  16. P.R. Poudel, P.P. Poudel, B. Rout, M. El Bouanani, and F.D. McDaniel: An XPS study to investigate the dependence of carbon ion fluences in the formation of buried SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 283, 93 (2012).

    Article  CAS  Google Scholar 

  17. M.P. Siegal, P.N. Provencio, D.R. Tallant, R.L. Simpson, B. Kleinsorge, and W.I. Milne: Bonding topologies in diamondlike amorphous-carbon films. Appl. Phys. Lett. 76, 2047 (2000).

    Article  CAS  Google Scholar 

  18. C.A. Davis, G.A.J. Amaratunga, and K.M. Knowles: Growth mechanism and cross-sectional structure of tetrahedral amorphous carbon thin films. Phys. Rev. Lett. 80, 3280 (1998).

    Article  CAS  Google Scholar 

  19. C.A. Davis, K.M. Knowles, and G.A.J. Amaratunga: Cross-sectional structure of tetrahedral amorphous carbon thin films. Surf. Coat. Technol. 76-77, 316 (1995).

    Article  CAS  Google Scholar 

  20. E. Riedo, F. Comin, J. Chevrier, F. Schmithusen, S. Decossas, and M. Sancrotti: Structural properties and surface morphology of laser-deposited amorphous carbon and carbon nitride films. Surf. Coat. Technol. 125, 124 (2000).

    Article  CAS  Google Scholar 

  21. Y. Lifshitz, S.R. Kasi, J.W. Rabalais, and W. Eckstein: Subplantation model for film growth from hyperthermal species. Phys. Rev. B 41, 10468 (1990).

    Article  CAS  Google Scholar 

  22. G.M. Pharr, D.L. Callahan, S.D. McAdams, T.Y. Tsui, S. Anders, A. Anders, J.W. Ager III, I.G. Brown, C.S. Bhatia, S.R.P. Silva, and J. Robertson: Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing. Appl. Phys. Lett. 68, 779 (1996).

    Article  CAS  Google Scholar 

  23. J. Robertson: Requirements of ultrathin carbon coatings for magnetic storage technology. Tribol. Int. 36, 405 (2003).

    Article  CAS  Google Scholar 

  24. J. Robertson: Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383, 81 (2001).

    Article  CAS  Google Scholar 

  25. E. Byon and A. Anders: Ion energy distribution functions of vacuum arc plasmas. J. Appl. Phys. 93, 1899 (2003).

    Article  CAS  Google Scholar 

  26. H.-S. Zhang and K. Komvopoulos: Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization. Rev. Sci. Instrum. 79, 073905 (2008).

    Article  Google Scholar 

  27. N. Wang and K. Komvopoulos: Incidence angle effect of energetic carbon ions on deposition rate, topography, and structure of ultrathin amorphous carbon films deposited by filtered cathodic vacuum arc. IEEE Trans. Magn. 48, 2220 (2012).

    Article  CAS  Google Scholar 

  28. D. Wan and K. Komvopoulos: Transmission electron microscopy and electron energy loss spectroscopy analysis of ultrathin amorphous carbon films. J. Mater. Res. 19, 2131 (2004).

    Article  CAS  Google Scholar 

  29. D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 2009). Chapter 37, pp. 679–681.

    Book  Google Scholar 

  30. R.F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. (Springer, New York, 2011). Chapter 3, pp. 111–229.

    Book  Google Scholar 

  31. R.F. Egerton: Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009).

    Article  Google Scholar 

  32. V. Olevano and L. Reining: Excitonic effects on the silicon plasmon resonance. Phys. Rev. Lett. 86, 5962 (2001).

    Article  CAS  Google Scholar 

  33. D.R. McKenzie, D. Muller, and B.A. Pailthorpe: Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. Phys. Rev. Lett. 67, 773 (1991).

    Article  CAS  Google Scholar 

  34. A. Duarte-Moller, F. Espinosa-Magana, R. Martinez-Sanchez, M. Avalos-Borja, G.A. Hirata, and L. Cota-Araiza: Study of different forms of carbon by analytical electron microscopy. J. Electron Spectrosc. Relat. Phenom. 104, 61 (1999).

    Article  CAS  Google Scholar 

  35. S.D. Berger, D.R. McKenzie, and P.J. Martin: EELS analysis of vacuum arc-deposited diamond-like films. Philos. Mag. Lett. 57, 285 (1988).

    Article  CAS  Google Scholar 

  36. J.J. Cuomo, J.P. Doyle, J. Bruley, and J.C. Liu: Sputter deposition of dense diamond-like carbon films at low temperature. Appl. Phys. Lett. 58, 466 (1991).

    Article  CAS  Google Scholar 

  37. R.J. Iwanowski, K. Fronc, W. Paszkowicz, and M. Heinonen: XPS and XRD study of crystalline 3C-SiC grown by sublimation method. J. Alloys Compd. 286, 143 (1999).

    Article  CAS  Google Scholar 

  38. D. Wan and K. Komvopoulos: Tetrahedral and trigonal carbon atom hybridization in thin amorphous carbon films synthesized by radio-frequency sputtering. J. Phys. Chem. C 111, 9891 (2007).

    Article  CAS  Google Scholar 

  39. S. Tanuma, C.J. Powell, and D.R. Penn: Calculations of electron inelastic mean free paths II. Data for 27 elements over the 50-2000 eV range. Surf. Interface Anal. 17, 911 (1991).

    Article  CAS  Google Scholar 

  40. W.H. Gries: A universal predictive equation for the inelastic mean free pathlengths of X-ray photoelectrons and Auger electrons. Surf. Interface Anal. 24, 38 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was funded by the Computer Mechanics Laboratory (CML) and the UCB-KAUST Academic Excellence Alliance (AEA) Program. TEM and XPS studies were performed at the National Center for Electron Microscopy and the Molecular Foundry, respectively, of the Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos Komvopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, N., Komvopoulos, K. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition. Journal of Materials Research 28, 2124–2131 (2013). https://doi.org/10.1557/jmr.2013.206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.206

Navigation