Skip to main content
Log in

Processing of poly(hydroxybutyrate-co-hydroxyvalerate)-based bionanocomposite foams using supercritical fluids

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Supercritical fluid (SCF) N2 was used as a physical foaming agent to fabricate microcellular injection-molded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)–poly(butylene adipate-co-terephthalate) (PBAT)–hyperbranched-polymer (HBP)–nanoclay (NC) bionanocomposites. The effects of incorporating HBP and NC on the morphological, mechanical, and thermal properties of both solid and microcellular PHBV–PBAT blends were studied. NC exhibited intercalated structures in solid components, but showed a mixture of exfoliated and intercalated structures in the corresponding microcellular nanocomposites. The addition of NC improved the thermal stability of the resulting nanocomposites. The addition of HBP and NC reduced the cell size and increased the cell density of microcellular components. The addition of HBP and NC enhanced the degree of crystallinity for both solid and microcellular components. Moreover, with the addition of HBP, the area under tan d curve, specific fracture toughness, and strain-at-break of the PHBV-based nanocomposite increased significantly whereas the storage modulus, specific Young’s modulus, and specific tensile strength decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
TABLE II.
FIG. 1.
FIG. 2.
FIG. 3.
TABLE III.
FIG. 4.
TABLE IV.
FIG. 5.
TABLE V.
FIG. 6.
TABLE VI.
FIG. 7.
TABLE VII.

Similar content being viewed by others

References

  1. S. Gong, L.S. Turng, C. Park, and L. Liao: Microcellular polymer nanocomposites for packaging and other applications, in Packaging Nanotechnology, edited by M.M.A.K. Mohanty, H.S. Nalwa (American Scientific Publishers, Valencia, CA, 2008).

    Google Scholar 

  2. J. Xu and D. Pierick: Microcellular foam processing in reciprocating screw injection molding machines. J. Injection Molding Technol. 5, 152 (2001).

    CAS  Google Scholar 

  3. J. Xu: Microcellular Injection Molding (John Wiley & Sons, Hoboken, NJ, 2010); p. 618.

    Book  Google Scholar 

  4. S. Gong, M. Yuan, A. Chandra, A. Winardi, A. Osorio, and L.S. Turng: Microcellular injection molding. Int. Polym. Proc. 2, 202 (2005).

    Article  Google Scholar 

  5. A. Kramschuster, S. Pilla, S. Gong, A. Chandra and L.S. Turng: Injection molded solid and microcellular polylactide compounded with recycled paper shopping bag fibers. Int. Polym. Proc. 22, 436 (2007).

    Article  CAS  Google Scholar 

  6. A. Javadi, A.J. Kramschuster, S. Pilla, J. Lee, S. Gong, and L.S. Turng: Processing and characterization of microcellular PHBV/PBAT blends. Polym. Eng. Sci. 50, 1440 (2010).

    Article  CAS  Google Scholar 

  7. A.K. Mohanty, M. Misra, and L.T. Drzal: Sustainable biocomposites from renewable resources: Opportunities and challenges in the green materials world. J. Polym. Environ. 10, 19 (2002).

    Article  CAS  Google Scholar 

  8. K. Sudesh, H. Abe, and Y. Doi: Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 25, 1503 (2000).

    Article  CAS  Google Scholar 

  9. N.M. Barkoula, S.K. Garkhail, and T. Peijs: Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate. Ind. Crops Prod. 31, 34 (2010).

    Article  CAS  Google Scholar 

  10. G. Adamus: Aliphatic polyesters for advanced technologies structural characterization of biopolyesters with the aid of mass spectrometry. Macromol. Symp. 239, 77 (2006).

    Article  CAS  Google Scholar 

  11. I. Gursel, C. Balcik, Y. Arica, O. Akkus, N. Akkas, and V. Hasirci: Synthesis and mechanical properties of interpenetrating networks of polyhydroxybutyrate-co-hydroxyvalerate and polyhydroxyethyl methacrylate. Biomaterials 19, 1137 (1998).

    Article  CAS  Google Scholar 

  12. J.F. Zhang and X.Z. Sun: Mechanical properties and crystallization behavior of poly(lactic acid) blended with dendritic hyperbranched polymer. Polym. Int. 53, 716 (2004).

    Article  CAS  Google Scholar 

  13. R. Bhardwaj and A.K. Mohanty: Modification of brittle polylactide by novel hyperbranched polymer-based nanostructures. Biomacromolecules 8, 2476 (2007).

    Article  CAS  Google Scholar 

  14. C. Gao and D. Yan: Hyperbranched polymers: From synthesis to applications. Prog. Polym. Sci. 29, 183 (2004).

    Article  CAS  Google Scholar 

  15. S. Pilla, A. Kramschuster, J. Lee, C. Clemons, S.Q. Gong, and L.S. Turng: Microcellular processing of polylactide-hyperbranched polyester-nanoclay composites. J. Mater. Sci. 45, 2732 (2010).

    Article  CAS  Google Scholar 

  16. W.M. Choi, T.W. Kim, O.O. Park, Y.K. Chang, and J.W. Lee: Preparation and characterization of poly(hydroxybutyrate-co-hydroxyvalerate)-organoclay nanocomposites. J. Appl. Polym. Sci. 90, 525 (2003).

    Article  CAS  Google Scholar 

  17. S. Wang, C. Song, G. Chen, T. Guo, J. Liu, B. Zhang, and S. Takeuchi: Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym. Degrad. Stab. 87, 69 (2005).

    Article  CAS  Google Scholar 

  18. G.X. Chen, G.J. Hao, T.Y. Guo, M.D. Song, and B.H. Zhang: Crystallization kinetics of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/clay nanocomposites. J. Appl. Polym. Sci. 93, 655 (2004).

    Article  CAS  Google Scholar 

  19. A. Javadi, Y. Srithep, J. Lee, S. Pilla, C. Clemons, S. Gong, and L.S. Turng: Processing and characterization of solid and microcellular PHBV/PBAT blend and its RWF/nanoclay composites. Composites Part A 41, 982 (2010).

    Article  CAS  Google Scholar 

  20. A. Javadi, Y. Srithep, S. Pilla, J. Lee, S. Gong, and L.S. Turng: Processing and characterization of solid and microcellular PHBV/coir fiber composites. Mater. Sci. Eng., C 30, 749 (2010).

    Article  CAS  Google Scholar 

  21. M.L. Addonizio, E. Martuscelli, and C. Silvestre: Study of the nonisothermal crystallization of poly(ethylene oxide) poly(methyl methacrylate) blends. Polymer 28, 183 (1987).

    Article  CAS  Google Scholar 

  22. H.E. Naguib, C.B. Park, U. Panzer, and N. Reichelt: Strategies for achieving ultra low-density polypropylene foams. Polym. Eng. Sci. 42, 1481 (2002).

    Article  CAS  Google Scholar 

  23. S.T. Lim, Y.H. Hyun, C.H. Lee, and H.J. Choi: Preparation and characterization of microbial biodegradable poly(3-hydroxybutyrate)/organoclay nanocomposite. J. Mater. Sci. Lett. 22, 299 (2003).

    Article  CAS  Google Scholar 

  24. T.N. Li, L.S. Turng, S.Q. Gong, and K. Erlacher: Polylactide, nanoclay, and core-shell rubber composites. Polym. Eng. Sci. 46, 1419 (2006).

    Article  CAS  Google Scholar 

  25. X.C. Li, H.M. Park, J.O. Lee, and C.S. Ha: Effect of blending sequence on the microstructure and properties of PBT/EVA-g-MAH/organoclay ternary nanocomposites. Polym. Eng. Sci. 42, 2156 (2002).

    Article  CAS  Google Scholar 

  26. L.Q. Miao, Z.B. Qiu, W.T. Yang, and T. Ikehara: Fully biodegradable poly(3-hydroxybutyrate-co-hydroxyvalerate)/poly(ethylene succinate) blends: Phase behavior, crystallization and mechanical properties. React. Funct. Polym. 68, 446 (2008).

    Article  CAS  Google Scholar 

  27. H. Chen, M. Wang, Y. Lin, C.M. Chan, and J. Wu: Morphology and mechanical property of binary and ternary polypropylene nanocomposites with nanoclay and CaCo3 particles. J. Appl. Polym. Sci. 106, 3409 (2007).

    Article  CAS  Google Scholar 

  28. R.B. McClurg: Design criteria for ideal foam nucleating agents. Chem. Eng. Sci. 59, 5779 (2004).

    Article  CAS  Google Scholar 

  29. L.J. Lee, C.C. Zeng, X. Cao, X.M. Han, J. Shen, and G.J. Xu: Polymer nanocomposite foams. Compos. Sci. Technol. 65, 2344 (2005).

    Article  CAS  Google Scholar 

  30. S. Bruzaud and A. Bourmaud: Thermal degradation and (nano)mechanical behavior of layered silicate reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. Polym. Test. 26, 652 (2007).

    Article  CAS  Google Scholar 

  31. S. Mohanty and S.K. Nayak: Aromatic-aliphatic poly(butylene adipate-co-terephthalate) bionanocomposite: Influence of organic modification on structure and properties. Polym. Compos. 31, 1194 (2010).

    CAS  Google Scholar 

  32. S. Sinha Ray, K. Okamoto, K. Yamada, and M. Okamoto: Novel porous ceramic material via burning of polylactide/layered silicate nanocomposite. Nano Lett. 2, 423 (2002).

    Article  CAS  Google Scholar 

  33. W.J. Liu, H.L. Yang, Z. Wang, L.S. Dong, and J.J. Liu: Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J. Appl. Polym. Sci. 86, 2145 (2002).

    Article  CAS  Google Scholar 

  34. L.M.W.K. Gunaratne and R.A. Shanks: Multiple melting behavior of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Eur. Polym. J. 41, 2980 (2005).

    Article  CAS  Google Scholar 

  35. J. Qian, L.Y. Zhu, J.W. Zhang, and R.S. Whitehouse: Comparison of different nucleating agents on crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerates). J. Polym. Sci. Part B: Polym. Phys. 45, 1564 (2007).

    Article  CAS  Google Scholar 

  36. P.M. Ma, R.Y. Wang, S.F. Wang, Y. Zhang, Y.X. Zhang, and D. Hristova: Effects of fumed silica on the crystallization behavior and thermal properties of poly(hydroxybutyrate-co-hydroxyvalerate). J. Appl. Polym. Sci. 108, 1770 (2008).

    Article  CAS  Google Scholar 

  37. R. Masirek, Z. Kulinski, D. Chionna, E. Piorkowska, and M. Pracella: Composites of poly(L-lactide) with hemp fibers: Morphology and thermal and mechanical properties. J. Appl. Polym. Sci. 105, 255 (2007).

    Article  CAS  Google Scholar 

  38. M. Pracella, D. Chionna, I. Anguillesi, Z. Kulinski, and E. Piorkowska: Functionalization, compatibilization and properties of polypropylene composites with Hemp fibers. Compos. Sci. Technol. 66, 2218 (2006).

    Article  CAS  Google Scholar 

  39. P. Bordes, E. Pollet, and L. Averous: Nanobiocomposites: Biodegradable polyester/nanoclay systems. Prog. Polym. Sci. 34, 125 (2009).

    Article  CAS  Google Scholar 

  40. L.A. Pothan, Z. Oommen, and S. Thomas: Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos. Sci. Technol. 63, 283 (2003).

    Article  CAS  Google Scholar 

  41. Y. Lin, K.Y. Zhang, Z.M. Dong, L.S. Dong, and Y.S. Li: Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 40, 6257 (2007).

    Article  CAS  Google Scholar 

  42. A.S. Argon, R.E. Cohen, O.S. Gebizlioglu, H.R. Brown, and E.J. Kramer: A new mechanism of toughening glassy-polymers. 2. Theoretical approach. Macromolecules 23, 3975 (1990).

    Article  CAS  Google Scholar 

  43. O.S. Gebizlioglu, H.W. Beckham, A.S. Argon, R.E. Cohen, and H.R. Brown: A new mechanism of toughening glassy-polymers. 1. Experimental procedures. Macromolecules 23, 3968 (1990).

    Article  CAS  Google Scholar 

  44. S. Wong, R.A. Shanks, and H. Hodzic: Mechanical behavior and fracture toughness of poly(L-lactic acid)-natural fiber composites modified with hyperbranched polymers. Macromol. Mater. Eng. 289, 447 (2004).

    Article  CAS  Google Scholar 

  45. A. Kramschuster, S. Gong, L.S. Turng, T. Li, and T. Li: Injection-molded solid and microcellular polylactide and polylactide nanocomposites. J. Biobased Mater. Bioenergy 1, 37 (2007).

    Article  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the financial support from the Environmental Protection Agency (EPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.-S. Turng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javadi, A., Srithep, Y., Clemons, C.C. et al. Processing of poly(hydroxybutyrate-co-hydroxyvalerate)-based bionanocomposite foams using supercritical fluids. Journal of Materials Research 27, 1506–1517 (2012). https://doi.org/10.1557/jmr.2012.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.74

Navigation