Skip to main content
Log in

Assembled graphene oxide and single-walled carbon nanotube ink for stable supercapacitors

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We describe the synthesis and fabrication of a graphene oxide (GO) and single-walled carbon nanotube (SWCNT) composite ink (GO–SWCNT ink) for electrochemically stable supercapacitors. Atomic force microscopy and scanning electron microscopy studies demonstrate that the obtained GO flakes are single layer with size distribution from 100 nm to 20 μm. SWCNTs are dispersed using a GO aqueous solution (2 mg/mL) with sonication support to achieve a SWCNT concentration of 12 mg/mL, the highest reported value so far without surfactant assistance. Raman spectroscopy studies indicate that the full-width at half-maximum of the G band increases with the mixing of SWCNT and GO indicating that electronic structure changes via π–π interactions of GO sheets and SWCNTs. Paper-based electrodes of supercapacitor were conveniently fabricated with GO–SWCNT composite ink via a dip casting method. By using different concentrations of SWCNT in the ink, the paper electrodes provide different capacitance values. The highest value of specific capacitance reaches 295 F/g at a current density of 0.5 A/g with a GO/SWCNT weight ratio of 1:5. The cycling stability for the GO–SWCNT paper electrode supercapacitors indicates capacitance retention of 85% over 60,000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
SCHEME 1
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. Z.H. Zhong, D.L. Wang, Y. Cui, M.W. Bockrath, and C.M. Lieber: Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302, 1377 (2003).

    CAS  Google Scholar 

  2. J.A. Rogers: Electronic materials - making graphene for macroelectronics. Nat. Nanotechnol. 3, 254 (2008).

    CAS  Google Scholar 

  3. S. Guo, M. Ghazinejad, X. Qin, H. Sun, W. Wang, F. Zaera, M. Ozkan, and C.S. Ozkan: Tuning electron transport in graphene-based field-effect devices using block co-polymers. Small 8, 1073 (2012).

    CAS  Google Scholar 

  4. S-R. Guo, J. Lin, M. Penchev, E. Yengel, M. Ghazinejad, C.S. Ozkan, and M. Ozkan: Label free DNA detection using large area graphene based field effect transistor biosensors. J. Nanosci. Nanotechnol. 11, 5258 (2011).

    CAS  Google Scholar 

  5. M.K. Shukla, M. Dubey, and J. Leszczynski: Theoretical investigation of electronic structures and properties of C-60-gold nanocontacts. ACS Nano 2, 227 (2008).

    CAS  Google Scholar 

  6. T.O. Wehling, K.S. Novoselov, S.V. Morozov, E.E. Vdovin, M.I. Katsnelson, A.K. Geim, and A.I. Lichtenstein: Molecular doping of graphene. Nano Lett. 8, 173 (2008).

    CAS  Google Scholar 

  7. P.K. Ang, W. Chen, A.T.S. Wee, and K.P. Loh: Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392 (2008).

    CAS  Google Scholar 

  8. J.B. Wu, M. Agrawal, H.A. Becerril, Z.N. Bao, Z.F. Liu, Y.S. Chen, and P. Peumans: Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4, 43 (2010).

    CAS  Google Scholar 

  9. Y. Wang, X.H. Chen, Y.L. Zhong, F.R. Zhu, and K.P. Loh: Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 95, 063302 (2009).

    Google Scholar 

  10. A.P. Alivisatos, I. Gur, N.A. Fromer, C.P. Chen, and A.G. Kanaras: Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett. 7, 409 (2007).

    Google Scholar 

  11. Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537 (2011).

    CAS  Google Scholar 

  12. L. Dai, D.W. Chang, J-B. Baek, and W. Lu: Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130 (2012).

    CAS  Google Scholar 

  13. Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, and S. Dai: Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828 (2011).

    CAS  Google Scholar 

  14. M.F. El-kady, V. Strong, S. Dubin, and R.B. Kaner: Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326 (2012).

    CAS  Google Scholar 

  15. K.J. Ziegler, Z.N. Gu, H.Q. Peng, E.L. Flor, R.H. Hauge, R.E. Smalley: Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 1541 (2005).

    CAS  Google Scholar 

  16. H. Sato and M. Sano: Characteristics of ultrasonic dispersion of carbon nanotubes aided by antifoam. Colloids Surf., A 322, 103 (2008).

    CAS  Google Scholar 

  17. X.H. Peng and S.S. Wong: Functional covalent chemistry of carbon nanotube surfaces. Adv. Mater. 21, 625 (2009).

    CAS  Google Scholar 

  18. G.D. Zhan, X.H. Du, D.M. King, L.F. Hakim, X.H. Liang, J.A. McCormick, and A.W. Weimer: Atomic layer deposition on bulk quantities of surfactant-modified single-walled carbon nanotubes. J. Am. Ceram. Soc. 91, 831 (2008).

    CAS  Google Scholar 

  19. J.F. Campbell, I. Tessmer, H.H. Thorp, and D.A. Erie: Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots. J. Am. Chem. Soc. 130, 10648 (2008).

    CAS  Google Scholar 

  20. Y.Y. Ou and M.H. Huang: High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. J. Phys. Chem. B 110, 2031 (2006).

    CAS  Google Scholar 

  21. J.Y. Luo, L.J. Cote, V.C. Tung, A.T.L. Tan, P.E. Goins, J.S. Wu, and J.X. Huang: Graphene oxide nanocolloids. J. Am. Chem. Soc. 132, 17667 (2010).

    CAS  Google Scholar 

  22. D.S. Yu and L.M. Dai: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467 (2010).

    CAS  Google Scholar 

  23. J.M. Shen, A.D. Liu, Y. Tu, G.S. Foo, C.B. Yeo, M.B. Chan-Park, R.R. Jiang, and Y. Chen: How carboxylic groups improve the performance of single-walled carbon nanotube electrochemical capacitors? Energy Environ. Sci. 4, 4220 (2011).

    CAS  Google Scholar 

  24. B. Zhao, P. Liu, Y. Jiang, D.Y. Pan, H.H. Tao, J.S. Song, T. Fang, and W.W. Xu: Supercapacitor performances of thermally reduced graphene oxide. J. Power Sources 198, 423 (2012).

    CAS  Google Scholar 

  25. Y. Chen, X.O. Zhang, D.C. Zhang, P. Yu, and Y.W. Ma: High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49, 573 (2011).

    CAS  Google Scholar 

  26. N. Jha, P. Ramesh, E. Bekyarova, M.E. Itkis, and R.C. Haddon: High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture. Adv. Energy Mater. 2, 438 (2012).

    CAS  Google Scholar 

  27. S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu, and S.X. Dou: Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4, 1855 (2011).

    CAS  Google Scholar 

  28. J. Jiang, J. Liu, W. Zhou, J. Zhu, X. Huang, X. Qi, H. Zhang, and T. Yu: CNT/Ni hybrid nanostructured arrays: Synthesis and application as high-performance electrode materials for pseudocapacitors. Energy Environ. Sci. 4, 5000–5007 (2011).

    CAS  Google Scholar 

  29. H. Li, C. Xu, N. Srivastava, and K. Banerjee: Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects. IEEE Trans. Electron Devices 56, 1799 (2009).

    CAS  Google Scholar 

  30. Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen: Superp13103 (2009).

    Google Scholar 

  31. W. Wang, S. Guo, M. Penchev, I. Ruiz, K.N. Bozhilov, D. Yan, M. Ozkan, and C.S. Ozkan: Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy.https://doi.org/10.1016/j.nanoen.2012.10.001.

  32. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, and G. Gruner: Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872 (2009).

    CAS  Google Scholar 

  33. L.B. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, and Y. Cui: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. U.S.A. 106, 21490 (2009).

    CAS  Google Scholar 

  34. J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, and J.X. Huang: Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132, 8180 (2010).

    CAS  Google Scholar 

  35. W.S. Hummers Jr and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    CAS  Google Scholar 

  36. F. Ali, N. Agarwal, P.K. Nayak, R. Das, and N. Periasamy: Chemical route to the formation of graphene. Curr. Sci. 97, 682 (2009).

    Google Scholar 

  37. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour: Improved synthesis of graphene oxide. ACS Nano 4, 4806 (2010).

    CAS  Google Scholar 

  38. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff: The chemistry of graphene oxide. Chem. Soc. Rev. 39 228 (2010).

    CAS  Google Scholar 

  39. T. Szabo, O. Berkesi, and I. Dekany: DRIFT study of deuterium-exchanged graphite oxide. Carbon 43, 3186 (2005).

    CAS  Google Scholar 

  40. L. Qiu, X.W. Yang, X.L. Gou, W.R. Yang, Z.F. Ma, and G.G. Wallace, and D. Li: Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem. Eur. J. 16, 10653 (2010).

    CAS  Google Scholar 

  41. B. Das, R. Voggu, C.S. Rout, and C.N.R. Rao: Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem. Commun. 2008, 5155 (2008).

    Google Scholar 

  42. Z. Chen, V. Augustyn, J. Wen, Y.W. Zhang, M.Q. Shen, B. Dunn, and Y.F. Lu: High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 23, 791 (2011).

    CAS  Google Scholar 

  43. F. Yang, B. Luo, Y. Jia, X. Li, B. Wang, Q. Song, F. Kang, and L. Zhi: Renewing functionalized graphene as electrodes for high performance supercapacitors. Adv. Mater. 24, 6348–6355 (2012).

    Google Scholar 

  44. A. Al-zubaidi, T. Inoue, T. Matsushita, Y. Ishii, T. Hashimoto, and S. Kawasaki: Cyclic voltammogram profile of single-walled carbon nanotube electric double-layer capacitor electrode reveals dumbbell shape. J. Phys. Chem. C 116, 7681 (2012).

    CAS  Google Scholar 

  45. Y. Yamada, T. Tanaka, K. Machida, S. Suematsu, K. Tamamitsu, H. Kataura, and H. Hatori: Electrochemical behavior of metallic and semiconducting single-wall carbon nanotubes for electric double-layer capacitor. Carbon 50, 1422 (2012).

    CAS  Google Scholar 

  46. Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 4, 5060–5067 (2011).

  47. C.H. Chen, D.S. Tsai, W.H. Chung, K.Y. Lee, Y.M. Chen, and Y.S. Huang: Electrochemical capacitors of miniature size with patterned carbon nanotubes and cobalt hydroxide. J. Power Sources 205, 510 (2012).

    CAS  Google Scholar 

  48. S. Arepalli, H. Fireman, C. Huffman, P. Moloney, P. Nikolaev, L. Yowell, C.D. Higgins, K. Kim, P.A. Kohl, S.P. Turano, and W.J. Ready: Carbon-nanotube-based electrochemical double-layer capacitor technologies for spaceflight applications. JOM 57, 26 (2005).

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support for this work by the Winston Chung Global Energy Center at UCR, The Riverside Public Utilities, the CMMI Division of the National Science Foundation (Award No. 0800680), the Materials Research Science and Engineering Center (NSF-MRSEC) on Polymers (Award No. 0213695), and the Nanoscale Science and Engineering Center (NSF-NSEC) on hierarchical manufacturing (CHM, Award No. 0531171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cengiz S. Ozkan.

Supplementary Material

Supplementary Material

Supplementary material can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, S., Wang, W., Ozkan, C.S. et al. Assembled graphene oxide and single-walled carbon nanotube ink for stable supercapacitors. Journal of Materials Research 28, 918–926 (2013). https://doi.org/10.1557/jmr.2012.421

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.421

Navigation