Skip to main content
Log in

Processing and functionalization of conductive substoichiometric TiO2 catalyst supports for PEM fuel cell applications

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of substoichiometric TiO2-based nanostructured materials with high aspect ratios for future proton exchange membrane fuel cells is investigated. Nanostructures were manufactured using atomic layer deposition of TiO2 over both anodic aluminum oxide templates and silicon nanowires. It was observed in this work that nanostructures with aspect ratios of 100:1 can be fabricated using both methods. The conductivity of TiO2 films was enhanced following a postdeposition reducing anneal (at 450 °C in H2). Liquid phase-deposited Pt and plasma-enhanced atomic layer deposition of Pt were both found to be appropriate suited for metallization of TiO2 structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. J. Wang, G. Yin, Y. Shao, S. Zhang, Z. Wang, and Y. Gao: Effect of carbon black support corrosion on the durability of Pt/C catalyst. J. Power Sources 171, 331–339 (2007).

    Article  CAS  Google Scholar 

  2. T. Ioroi, H. Senoh, S. Yamazaki, Z. Siroma, N. Fujiwara, and K. Yasuda: Stability of corrosion-resistant Magneli-phase Ti4O7-supported PEMFC catalysts at high potentials. J. Electrochem. Soc. 155, B321–B326 (2008).

    Article  CAS  Google Scholar 

  3. H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah, and A. Mazza: A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 178, 103 (2008).

    Article  CAS  Google Scholar 

  4. X. Li, A.L. Zhu, W. Qu, H. Wang, R. Hui, L. Zhang, and J. Zhang: Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries. Electrochim. Acta 55, 5891 (2010).

    Article  CAS  Google Scholar 

  5. T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, and K. Yasuda: Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem. Commun. 7, 183 (2005).

    Article  CAS  Google Scholar 

  6. Y. Fu, Z.D. Wei, S.G. Chen, L. Li, Y.C. Feng, Y.Q. Wang, X.L. Ma, M.J. Liao, P.K. Shen, and S.P. Jiang: Synthesis of Pd/TiO2 nanotubes/Ti for oxygen reduction reaction in acidic solution. J. Power Sources 189, 982 (2009).

    Article  CAS  Google Scholar 

  7. S. Siracusano, V. Baglio, C. D’Urso, V. Antonucci, and A.S. Arico: Preparation and characterization of titanium suboxides as conductive supports of IrO2 electrocatalysts for application in SPE electrolysers. Electrochem. Acta 54, 6292–6299 (2009).

    Article  CAS  Google Scholar 

  8. E. Antolini and E.R. Gonzalez: Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics 180, 746 (2009).

    Article  CAS  Google Scholar 

  9. P. Paunovic, O. Popovski, E. Fidancevska, B. Ranguelov, D.S. Gogovska, A.T. Dimitrov, and S.H. Jordanov: Co-Magneli phases electrocatalysts for hydrogen/oxygen evolution. Int. J. Hydrogen Energy. 35, 10073 (2010).

    Article  CAS  Google Scholar 

  10. D.H. Lim, W.J. Lee, J. Wheldon, N.L. Macy, and W. Smyrl: Electrochemical characterization and durability of sputtered Pt catalysts on TiO2 nanotube arrays as a cathode material for PEFCs. J. Electrochem. Soc. 157, B862 (2010).

    Article  CAS  Google Scholar 

  11. E.E. Farndon and D. Pletcher: Studies of platinized Ebonex electrodes. Electrochim. Acta 42, 1281–1285 (1997).

    Article  CAS  Google Scholar 

  12. P.C.S. Hayfield: Development of a New Material: Monolithic Ebonex Ceramic, 1st ed. (Royal Society of Chemistry, Cambridge, 2002).

    Google Scholar 

  13. D.R. Jennison, O. Dulub, W. Hebenstreit, and U. Diebold: Structure of an ultrathin TiOx film, formed by the strong metal support interaction (SMSI), on Pt nanocrystals on TiO2(1 1 0). Surf. Sci. 492, L677–L687 (2001).

    Article  CAS  Google Scholar 

  14. J.M. Jaksic, N.V. Krstajic, L.M. Vracar, S.G. Neophytides, D. Labou, P. Falaras, and M.M. Jaksic: Spillover of primary oxides as a dynamic catalytic effect of interactive hypo-d-oxide supports. Electrochim. Acta 53, 349 (2007).

    Article  CAS  Google Scholar 

  15. R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, and F. Uribe: Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007).

    Article  CAS  Google Scholar 

  16. W.J. Lee, M. Alhosan, S.L. Yohe, N.I. Macy, and W.H. Smyrl: Synthesis of Pt/TiO2 nanotube catalysts for cathodic oxygen reduction. J. Electrochem. Soc. 155, B915 (2008).

    Article  CAS  Google Scholar 

  17. U. Diebold: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  18. E.E. Farndon, D. Pletcher, and A. Saraby-Reintjes: The electrodeposition of platinum onto a conducting ceramic, Ebonex®. Electrochim. Acta 42, 1269–1279 (1997).

    Article  CAS  Google Scholar 

  19. M. Wang, D. Guo, and H. Li: High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J. Solid State Chem. 178, 1996 (2005).

    Article  CAS  Google Scholar 

  20. S. Ono, M. Saito, and H. Asoh: Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim. Acta 51, 827–833 (2005).

    Article  CAS  Google Scholar 

  21. A. Saedi and M. Ghorbani: Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template. Mater. Chem. Phys. 91, 417–423 (2005).

    Article  CAS  Google Scholar 

  22. C.U. Yu, C.C. Hu, A. Bai, and Y.F. Yang: Pore-size dependence of AAO films on surface roughness of Al-1050 sheets controlled by electropolishing coupled with fractional factorial design. Surf. Coat. Technol. 201, 7259–7265 (2007).

    Article  CAS  Google Scholar 

  23. R.S. Wagner and W.C. Ellis: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

    Article  CAS  Google Scholar 

  24. V. Schmidt, J.V. Wittemann, S. Senz, and U. Gosele: Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681 (2009).

    Article  CAS  Google Scholar 

  25. Whatman Ltd.: Anopore Inorganic Membranes. http://www.whatman.com/PRODAnoporeInorganicMembranes.aspx (accessed May 7, 2012).

    Google Scholar 

  26. R. Phillips, P. Hansen, and E. Eisenbraun: Atomic layer deposition fabricated substoichiometric TiOx nanorods as fuel cell catalyst supports. J. Vac. Sci. Technol., A 30(1), 01A125 (2012).

    Article  Google Scholar 

  27. K. Kinoshita: Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J. Electrochem. Soc. 137(3), 845–848 (1990).

    Article  CAS  Google Scholar 

  28. P. Kim, J.B. Joo, W. Kim, J. Kim, I.K. Song, and J. Yi: NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J. Power Sources 160, 987–990 (2006).

    Article  CAS  Google Scholar 

  29. R.S. Nicholson: Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37(11), 1351 (1965).

    Article  CAS  Google Scholar 

  30. R.G. Compton, M.E. Laing, D. Mason, R.J. Northing, and P.R. Unwin: Rotating disc electrodes: The theory of chronoamperometry and its use in mechanistic investigations. Proc. R. Soc. London, Ser. A 418, 113–154 (1988).

    Article  CAS  Google Scholar 

  31. Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, and S.S. Kocha: Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82, 6321–6328 (2010).

    Article  CAS  Google Scholar 

  32. K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, and N.M. Markovic: Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 53, 3181–3188 (2008).

    Article  CAS  Google Scholar 

  33. T. Maiyalagan, B. Viswanathan, and U.V. Varadaraju: Electro-oxidation of methanol on TiO2 nanotube supported platinum electrodes. J. Nanosci. Nanotechnol. 6, 2067–2071 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, R., O’Toole, A., He, X. et al. Processing and functionalization of conductive substoichiometric TiO2 catalyst supports for PEM fuel cell applications. Journal of Materials Research 28, 461–467 (2013). https://doi.org/10.1557/jmr.2012.324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.324

Navigation