Skip to main content
Log in

In situ transmission electron microscopic investigations of reduction-oxidation reactions during densification of nickel nanoparticles

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The consolidation of crystalline powders to obtain dense microstructures is typically achieved through a combination of volume and grain boundary diffusion. In situ transmission electron microscopy was utilized to study neck formation between adjacent nickel particles during the early stages of sintering. It was found that the presence of carbon during consolidation of Ni lowers the reduction temperature of nickel oxides on the particle surface and therefore has the potential to accelerate consolidation. In the absence of carbon, the surface oxides remain present during the early stage of sintering and neck formation between particles is limited by self-diffusion of nickel through the oxide layer. This study provides direct experimental evidence that corroborates related earlier hypotheses of self-cleaning on the surface of the nanoparticles that precedes neck formation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.M. German: Sintering Theory and Practice (John Wiley & Sons, Inc., New York, 1996).

    Google Scholar 

  2. S.J.L Kang: Sintering: Densification, Grain Growth, and Microstructure (Elsevier Butterworth-Heinemann, Amsterdam, Netherlands, 2005).

    Google Scholar 

  3. Y.M. Chiang, D.P. Birnie, and W.D. Kingery: Physical Ceramics (John Wiley & Sons, Weinheim, Germany, 1996).

    Google Scholar 

  4. Z.A. Munir and R.M. German: Generalized model for prediction of periodic trends in activation of sintering of refractory metals. High Temp. Sci. 9, 275–283 (1977).

    CAS  Google Scholar 

  5. E.A. Olevsky, S. Kandukuri, and L. Froyen: Consolidation enhancement in spark-plasma sintering: Impact of high heating rates. J. Appl. Phys. 102, 114913–114924 (2007).

    Article  CAS  Google Scholar 

  6. R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao: Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng., R 63, 127–287 (2009).

    Article  CAS  Google Scholar 

  7. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006).

    Article  CAS  Google Scholar 

  8. W. Chen, U. Anselmi-Tamburini, J.E. Garay, J.R. Groza, and Z.A. Munir: Fundamental investigations on the spark plasma sintering/synthesis process. I. Effect of dc pulsing on reactivity. Mater. Sci. Eng., A 394, 132–138 (2005).

    Article  CAS  Google Scholar 

  9. U. Anselmi-Tamburini, J.E. Garay, Z.A. Munir, A. Tacca, F. Maglia, and G. Spinolo: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. J. Mater. Res. 19, 3255–3262 (2004).

    Article  CAS  Google Scholar 

  10. U. Anselmi-Tamburini, J.E. Garay, and Z.A. Munir: Fundamental investigations on the spark plasma sintering/synthesis process. III. Current effect on reactivity. Mater. Sci. Eng., A 407, 24–30 (2005).

    Article  CAS  Google Scholar 

  11. V.Y. Kodash, J.R. Groza, K.C. Cho, B.R. Klotz, and R.J. Dowding: Field-assisted sintering of Ni nanopowders. Mater. Sci. Eng., A 385, 367–371 (2004).

    Article  Google Scholar 

  12. M. Nygren and Z.J. Shen: Novel assemblies via spark plasma sintering. Silicates Industriels 69, 211–218 (2004).

    CAS  Google Scholar 

  13. B. Basu, J.H. Lee, and D.Y. Kim: Development of nanocrystalline wear-resistant Y-TZP ceramics. J. Am. Ceram. Soc. 87, 1771–1774 (2004).

    Article  CAS  Google Scholar 

  14. M. Yue, J.X. Zhang, W.Q. Liu, and G.P. Wang: Chemical stability and microstructure of Nd-Fe-B magnet prepared by spark plasma sintering. J. Magn. Magn. Mater. 271, 364–368 (2004).

    Article  CAS  Google Scholar 

  15. X.L. Su, P.L. Wang, W.W. Chen, Z.J. Shen, M. Nygren, Y.B. Cheng, and D.S. Yan: Optical properties of SPS-ed Y- and (Dy, Y)-alpha-sialon ceramics. J. Mater. Sci. 39, 6257–6262 (2004).

    Article  CAS  Google Scholar 

  16. L.J. Zhou, Z. Zhao, A. Zimmermann, F. Aldinger, and M. Nygren: Preparation and properties of lead zirconate stannate titanate sintered by spark plasma sintering. J. Am. Ceram. Soc. 87, 606–611 (2004).

    Article  CAS  Google Scholar 

  17. X. Chen, K.A. Khor, S.H. Chan, and L.G. Yu: Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: Spark plasma sintering (SPS) of 0.5 wt% silica-doped yttria- stabilized zirconia (YSZ). Mater. Sci. Eng., A 374, 64–71 (2004).

    Article  CAS  Google Scholar 

  18. G. Aldica, V. Khodash, P. Badica, and J.R. Groza: Electrical conduction in initial field assisted sintering stages. J. Optoelectron. Adv. Mater. 9, 3863–3870 (2007).

    CAS  Google Scholar 

  19. J.R. Groza, M. Garcia, and J.A. Schneider: Surface effects in field-assisted sintering. J. Mater. Res. 16, 286–292 (2001).

    Article  CAS  Google Scholar 

  20. J.R. Groza and A. Zavaliangos: Sintering activation by external electrical field. Mater. Sci. Eng., A 287, 171–177 (2000).

    Article  Google Scholar 

  21. G.Q. Xie, O. Ohashi, N. Yamaguchi, M. Song, K. Mitsuishi, K. Furuya, and T. Noda: Reduction of surface oxide films in Al-Mg alloy powders by pulse electric current sintering. J. Mater. Res. 19, 815–819 (2004).

    Article  CAS  Google Scholar 

  22. G.Q. Xie, O. Ohashi, N. Yamaguchi, and A.R. Wang: Effect of surface oxide films on the properties of pulse electric-current sintered metal powders. Metall. Mater. Trans. A 34, 2655–2661 (2003).

    Article  Google Scholar 

  23. N. Sato: Theory for breakdown of anodic oxide films on metals. Electrochim. Acta 16, 1683 (1971).

    Article  CAS  Google Scholar 

  24. Z.A. Munir: Analytical treatment of the role of surface oxide layers in the sintering of metals. J. Mater. Sci. 14, 2733–2740 (1979).

    Article  CAS  Google Scholar 

  25. M. Tokita: Trends in advanced SPS spark plasma sintering systems and technology. Jpn. Soc. Powder Technol. 30, 790–804 (1993).

    Article  CAS  Google Scholar 

  26. D.M. Hulbert, D. Jiang, U. Anselmi-Tamburini, C. Unuvar, and A.K. Mukherjee: Experiments and modeling of spark plasma sintered, functionally graded boron carbide-aluminum composites. Mater. Sci. Eng., A 488, 333–338 (2008).

    Article  CAS  Google Scholar 

  27. S.K. Sharma, F.J. Vastola, and P.L. Walker: Reduction of nickel oxide by carbon. 2. Interaction between nickel oxide and natural graphite. Carbon 35, 529–533 (1997).

    Article  CAS  Google Scholar 

  28. W. Baukloh and F. Springorum: Reduction of nickel- and copper oxide with solid carbon. Z. Anorg. Allg. Chem. 230, 315–320 (1937).

    Article  CAS  Google Scholar 

  29. L.M. Gandia and M. Montes: Effect of thermal treatments on the properties of nickel and cobalt activated charcoal-supported catalysts. J. Catal. 145, 276–288 (1994).

    Article  CAS  Google Scholar 

  30. M.A. Asoro, D. Kovar, Y. Shao-Horn, L.F. Allard, and P.J. Ferreira: Coalescence and sintering of Pt nanoparticles: In situ observation by aberration-corrected HAADF STEM. Nanotechnology 21, 025701 (2010).

    Article  CAS  Google Scholar 

  31. S.B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested, and S. Helveg: Ostwald ripening in a Pt/SiO(2) model catalyst studied by in situ TEM. J. Catal. 281, 147–155 (2011).

    Article  CAS  Google Scholar 

  32. I. Janowska, M.S. Moldovan, O. Ersen, H. Bulou, K. Chizari, M.J. Ledoux, and P.H. Cuong: High temperature stability of platinum nanoparticles on few-layer graphene investigated by in situ high-resolution transmission electron microscopy. Nano Res. 4, 511–521 (2011).

    Article  CAS  Google Scholar 

  33. K. Ida, Y. Sugiyama, Y. Chujyo, M. Tomonari, T. Tokunaga, K. Sasaki, and K. Kuroda: In situ TEM studies of the sintering behavior of copper nanoparticles covered by biopolymer nanoskin. J. Electron Microsc. 59, S75–S80 (2010).

    Article  CAS  Google Scholar 

  34. R. Ristau, R. Tiruvalam, P.L. Clasen, E.P. Gorskowski, M.P. Harmer, C.J. Kiely, I. Hussain, and M. Brust: Electron microscopy studies of the thermal stability of gold nanoparticle arrays. Gold Bull. 42, 133–143 (2009).

    Article  CAS  Google Scholar 

  35. T.B. Holland, A.M. Thron, C.S. Bonifacio, A.K. Mukherjee, and K. van Benthem: Field assisted sintering of nickel nanoparticles during in situ transmission electron microscopy. Appl. Phys. Lett. 96, 243106 (2010).

    Article  CAS  Google Scholar 

  36. M. Hummelgard, R.Y. Zhang, H.E. Nilsson, and H. Olin: Electrical sintering of silver nanoparticle ink studied by in situ TEM probing. PLoS One 6, e30106 (2011).

    Article  CAS  Google Scholar 

  37. D.R. Gaskell: Introduction to the Thermodynamics of Materials, 5th ed. (Taylor & Francis, New York, Oxford, 2008).

    Google Scholar 

  38. E.H. Conrad, R.M. Aten, D.S. Kaufman, L.R. Allen, T. Engel, M. Dennijs, and E.K. Riedel: Observation of surface roughening on Ni (115). J. Chem. Phys. 84, 1015–1028 (1986).

    Article  CAS  Google Scholar 

  39. P.S. Maiya and J.M. Blakely: Surface self-diffusion and surface energy of nickel. J. Appl. Phys. 38, 698 (1967).

    Article  CAS  Google Scholar 

  40. J. Li, S.J. Dillon, and G.S. Rohrer: Relative grain boundary area and energy distributions in nickel. Acta Mater. 57, 4304–4311 (2009).

    Article  CAS  Google Scholar 

  41. P. Hassen: Physical Metallurgy, 3rd ed. (Cambridge University Press, Cambridge, UK, 1996).

    Book  Google Scholar 

Download references

Acknowledgments

This study was partially funded through UC Davis start-up funds and a young faculty early career award by the U.S. National Science Foundation (DMR-#0955638). M.M. acknowledges financial support from the Japan Student Services Organization (JASSO. T.B.H. and A.K.M. were supported by the Office of Naval Research (Program Manager Dr. L. Kabacoff under Grant No. N00014-10-1-0632

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus van Benthem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuno, M., Bonifacio, C.S., Rufner, J.F. et al. In situ transmission electron microscopic investigations of reduction-oxidation reactions during densification of nickel nanoparticles. Journal of Materials Research 27, 2431–2440 (2012). https://doi.org/10.1557/jmr.2012.256

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.256

Navigation