Skip to main content
Log in

Creation of single oxygen vacancy on titanium dioxide surface

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Physical and chemical properties of solid materials are modified by introducing defects, which disarrange the atomic periodic structure. Typical example is oxygen vacancies on titanium dioxide (TiO2) surfaces. Oxygen vacancies on TiO2 surfaces provide new physical and chemical surface properties, such as conductivity, catalytic activity, hydrophilicity, etc. To date, annealing, electron-/photo-stimulated desorption, and chemical reaction have been reported to create oxygen vacancies on TiO2 surfaces. However, these techniques do not allow position control of the defects at the atomic scale. We report the creation of single oxygen vacancy using a scanning tunneling microscope (STM). This technique creates oxygen vacancy at desired site. In addition, based on the experimental findings, we discuss the mechanism of manipulating atomic defects using the STM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.

Similar content being viewed by others

References

  1. V.E. Henrich: The Surface Science of Metal Oxide (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  2. U. Diebold: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).

    Article  CAS  Google Scholar 

  3. C.L. Pang, R. Lindsay, and G. Thornton: Chemical reactions on rutile TiO2(110). Chem. Soc. Rev. 37, 2328 (2008).

    Article  CAS  Google Scholar 

  4. Z. Dohnalek, I. Lyubinetsky, and R. Rousseau: Thermally-driven processes on rutile TiO2(110)-(1 x 1): A direct view at the atomic scale. Prog. Surf. Sci. 85, 161 (2010).

    Article  CAS  Google Scholar 

  5. M.A. Henderson: A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185 (2011).

    Article  CAS  Google Scholar 

  6. A.L. Linsebigler, G. Lu, and J.T. Yates Jr.: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95(3), 735 (1995).

    Article  CAS  Google Scholar 

  7. A. Stevanovic, M. Büttner, Z. Zhang, and J.T. Yates Jr.: Photoluminescence of TiO2: Effect of UV light and adsorbed molecules on surface band structure. J. Am. Chem. Soc. 134(1), 324 (2012).

    Article  CAS  Google Scholar 

  8. E. Hendry, F. Wang, J. Shan, T.F. Heinz, and M. Bonn: Electron transport in TiO2 probed by THz time-domain spectroscopy. Phys. Rev. B 69, 081101(R) (2004).

    Article  Google Scholar 

  9. E. Hendry, M. Koeberg, B. O’Regan, and M. Bonn: Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett. 6(4), 755 (2006).

    Article  CAS  Google Scholar 

  10. M.A. Henderson: An HREELS and TPD study of water on TiO2(110): The extent of molecular versus dissociative adsorption. Surf. Sci. 355, 151 (1996).

    Article  CAS  Google Scholar 

  11. T. Minato, Y. Izumi, K-i. Aika, A. Ishiguro, T. Nakajima, and Y. Wakatsuki: Nitric oxide reduction by carbon monoxide over supported hexaruthenium cluster catalysts. 1. The active site structure that depends on supporting metal oxide and catalytic reaction conditions. J. Phys. Chem. B 107(34), 9022 (2003).

    Article  CAS  Google Scholar 

  12. C.M. Yim, C.L. Pang, and G. Thornton: Oxygen vacancy origin of the surface band-gap state of TiO2(110). Phys. Rev. Lett. 104, 036806 (2010).

    Article  CAS  Google Scholar 

  13. A.C. Papageorgiou, N.S. Beglitis, C.L. Pang, G. Teobaldi, G. Cabailh, Q. Chen, A.J. Fisher, W.A. Hofer, and G. Thornton: Electron traps and their effect on the surface chemistry of TiO2(110). Proc. Natl. Acad. Sci. U.S.A. 107, 2391 (2010).

    Article  Google Scholar 

  14. S. Wendt, P.T. Sprunger, E. Lira, G.K.H Madsen, Z.S. Li, J.O. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, E. Laegsgaard, B. Hammer, and F. Besenbacher: The role of interstitial sites in the Ti3d defect state in the band gap of Titania. Science 320, 1755 (2008).

    Article  CAS  Google Scholar 

  15. D. Matthey, J.G. Wang, S. Wendt, J. Matthiesen, R. Schaub, E. Laegsgaard, B. Hammer, and F. Besenbacher: Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science 315, 1692 (2007).

    Article  CAS  Google Scholar 

  16. S. Wendt, R. Schaub, J. Matthiesen, E.K. Vestergaard, E. Wahlstrom, M. Rasmussen, P. Thostrup, L.M. Molina, E. Laegsgaard, I. Stensgaard, B. Hammer, and F. Besenbacher: Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surf. Sci. 598, 226 (2005).

    Article  CAS  Google Scholar 

  17. K. Onda, B. Li, J. Zhao, K.D. Jordan, J.L. Yang, and H. Petek: Wet electrons at the H2O/TiO2(110) surface. Science 308, 1154 (2005).

    Article  CAS  Google Scholar 

  18. B. Li, J. Zhao, K. Onda, K.D. Jordan, J. Yang, and H. Petek: Ultrafast interfacial proton-coupled electron transfer. Science 311, 1436 (2006).

    Article  CAS  Google Scholar 

  19. J. Zhao, B. Li, K. Onda, M. Feng, and H. Petek: Solvated electrons on metal oxide surfaces. Chem. Rev. 106(10), 4402 (2006).

    Article  CAS  Google Scholar 

  20. M.S. Chen and D.W. Goodman: The structure of catalytically active gold on titania. Science 306, 252 (2004).

    Article  CAS  Google Scholar 

  21. T. Minato, T. Susaki, S. Shiraki, H.S. Kato, M. Kawai, and K-i. Aika: Investigation of the electronic interaction between TiO2(110) surfaces and Au clusters by PES and STM. Surf. Sci. 566–, 1012 (2004).

    Article  Google Scholar 

  22. T. Minato, Y. Sainoo, Y. Kim, H.S. Kato, Aika K-i., M. Kawai, J. Zhao, H. Petek, T. Huang, W. He, B. Wang, Z. Wang, Y. Zhao, J.L. Yang, and J.G. Hou: The electronic structure of oxygen atom vacancy and hydroxyl impurity defects on titanium dioxide (110) surface. J. Chem. Phys. 130, 124502 (2009).

    Article  Google Scholar 

  23. M. Aono and R.R. Hasiguti: Interaction and ordering of lattice-defects in oxygen-deficient rutile TiO2-x. Phys. Rev. B 48, 12406 (1993).

    Article  CAS  Google Scholar 

  24. V.E. Henrich, G. Dresselhaus, and H.J. Zeiger: Observation of 2-dimensional phases associated with defect states on surface of TiO2. Phys. Rev. Lett. 36, 1335 (1976).

    Article  CAS  Google Scholar 

  25. M.L. Knotek and P. Feibelman: Ion desorption by core-hole auger decay. Phys. Rev. Lett. 40, 964 (1978).

    Article  CAS  Google Scholar 

  26. S. Suzuki, K. Fukui, H. Onishi, and Y. Iwasawa: Hydrogen adatoms on TiO2(110)-(1x1) characterized by scanning tunneling microscopy and electron stimulated desorption. Phys. Rev. Lett. 84, 2156 (2000).

    Article  CAS  Google Scholar 

  27. O. Bikondoa, C.L. Pang, R. Ithnin, C.A. Muryn, H. Onishi, and G. Thornton: Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat. Mater. 5, 189 (2006).

    Article  CAS  Google Scholar 

  28. S. Kajita, T. Minato, H.S. Kato, M. Kawai, and T. Nakayama: First-principles calculations of hydrogen diffusion on rutile TiO2(110) surfaces. J. Chem. Phys. 127, 104709 (2007).

    Article  Google Scholar 

  29. X.F. Cui, B. Wang, Z. Wang, T. Huang, Y. Zhao, J.L. Yang, and J.G. Hou: Formation and diffusion of oxygen-vacancy pairs on TiO2(110)-(1 x 1). J. Chem. Phys. 129, 044703 (2008).

    Article  Google Scholar 

  30. D.P. Acharya, C.V. Ciobanu, N. Camillone, and P. Sutter: Mechanism of electron-induced hydrogen desorption from hydroxylated rutile TiO2(110). J. Phys. Chem. C 114, 21510 (2010).

    Article  CAS  Google Scholar 

  31. T. Minato, S. Kajita, C.L. Pang, N. Asao, Y. Yamamoto, T. Nakayama, M. Kawai, and Y. Kim: in preparation.

Download references

Acknowledgment

This work was supported by Grant No. 21750002 from Ministry of Education, Culture, Sports, Science and Technology of Japan and the Japan Science Society and Sasakawa Foundation (the Japan Science Society) and Grant for Exploratory Research for Young Scientists (Tohoku University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taketoshi Minato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minato, T., Kawai, M. & Kim, Y. Creation of single oxygen vacancy on titanium dioxide surface. Journal of Materials Research 27, 2237–2240 (2012). https://doi.org/10.1557/jmr.2012.157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.157

Navigation