Skip to main content
Log in

Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Half-Heusler (HH) phases, a versatile class of alloys with promising functional properties, have recently gained attention as emerging thermoelectric materials. These materials are investigated from the perspective of thermal and electronic transport properties for enhancing the dimensionless figure of merit (ZT) at 800–1000 K. The electronic origin of thermopower enhancement is reviewed. Grain refinement and embedment of nanoparticles in HH alloy hosts were used to produce fine-grained as well as nanocomposites and monolithic nanostructured materials. Present experiments indicated that n-type Hf0.6Zr0.4NiSn0.995Sb0.005 HH alloys and p-type Hf0.3Zr0.7CoSn0.3Sb0.7/nano-ZrO2 composites can attain ZT = 1.05 and 0.8 near 900–1000 K, respectively. The observed ZT enhancements could be attributed to multiple origins; in particular, the electronic origin was identified. The prospect for higher ZT was investigated in light of a recently developed nanostructure model of lattice thermal conductivity. Tests performed on p–n couple devices from the newly developed HH materials showed good power generation efficiencies—achieving 8.7% efficiency for hot-side temperatures of about 700 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

REFERENCES

  1. S.R. Culp, S.J. Poon, N. Hickman, and T.M. Tritt: (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700 °C) p-type thermoelectric materials. Appl. Phys. Lett. 88, 042106 (2006).

    Article  Google Scholar 

  2. C. Yu, T.J. Zhu, R.Z. Shi, Y. Zhang, X.B. Zhao, and J. He: High-performance half-Heusler thermoelectric materials Hf1-x ZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering. Acta Mater. 57, 2757 (2009).

    Article  CAS  Google Scholar 

  3. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren: Enhanced thermoelectric figure of merit of p-type half-Heuslers. Nano Lett. 11, 556 (2011).

    Article  CAS  Google Scholar 

  4. S. Bhattacharya, A.L. Pope, R.T. Littleton, T.M. Tritt, V. Ponnambalam, Y. Xia, and S.J. Poon: Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1-xSbx. Appl. Phys. Lett. 77, 2476 (2000).

    Article  CAS  Google Scholar 

  5. J. Yang, H.M. Li, T. Wu, W.Q. Zhang, L.D. Chen, and J.H. Yang: Evaluation of half-Heusler compounds as thermoelectric materials based on the calculated electrical transport properties. Adv. Funct. Mater. 18, 2880 (2008).

    Article  CAS  Google Scholar 

  6. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  7. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen: Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009). J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou: High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152 (2010).

    Article  CAS  Google Scholar 

  8. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  9. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, and Z.F. Ren: Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  10. W.J. Xie, X.F. Tang, Y.G. Yan, Q.J. Zhang, and T.M. Tritt: Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl. Phys. Lett. 94, 102111 (2009).

    Article  Google Scholar 

  11. S.F. Fan, J.N. Zhao, J. Guo, Q.Y. Yan, J. Ma, and H.H. Hng: P-type BiSbTe nanocomposites with enhanced figure of merit. Appl. Phys. Lett. 96, 182104 (2010).

    Article  Google Scholar 

  12. H. Li, X.F. Tang, X.L. Su, Q.J. Zhang, and C. Uher: Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method. J. Phys. D: Appl. Phys. 42, 145409 (2009).

    Article  Google Scholar 

  13. J.M.O. Zide, J-H. Bahk, R. Singh, M. Zebarjadi, G. Zeng, H. Lu, J.P. Feser, D. Xu, S.L. Singer, Z.X. Bian, A. Majumdar, J.E. Bowers, A. Shakouri, and A.C. Gossard: High efficiency semimetal/semiconductor nanocomposite thermoelectric materials. J. Appl. Phys. 108, 123702 (2010).

    Article  Google Scholar 

  14. K. Kishimoto, M. Tsukamoto, and T. Koyanagi: Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films prepared on heated glass substrates by rf sputtering. J. Appl. Phys. 92, 5331 (2002).

    Article  CAS  Google Scholar 

  15. A. Popescu and L.M. Woods: Enhanced thermoelectricity in composites by electronic structure modifications and nanostructuring. Appl. Phys. Lett. 97, 052102 (2010).

    Article  Google Scholar 

  16. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008).

    Article  CAS  Google Scholar 

  17. J.H. Lee, J. Wu, and J.C. Grossman: Enhancing the thermoelectric power factor with highly mismatched isoelectronic doping. Phys. Rev. Lett. 104, 016602 (2010).

    Article  Google Scholar 

  18. W.J. Xie, J. Heb, S. Zhu, X.L. Su, S.Y. Wang, T. Holgate, J.W. Graff, V. Ponnambalam, S.J. Poon, X.F. Tang, Q.J. Zhang, and T.M. Tritt: Simultaneously optimizing the inde-pendent thermoelectric properties in (Ti, Zr, Hf)(Co, Ni) Sb alloy by in situ forming InSb nanoinclusions. Acta Mater. 58, 4705 (2010).

    Article  CAS  Google Scholar 

  19. J.W. Simonson, D. Wu, W.J. Xie, T.M. Tritt, and S.J. Poon: Introduction of resonant states and enhancement of thermoelectric properties in half-Heusler alloys. Phys. Rev. B 83, 235211 (2011).

    Article  Google Scholar 

  20. S. Ahmad, K. Hoang, and S.D. Mahanti: Ab initio study of deep defect states in narrow band-gap semiconductors: Group III impurities in PbTe. Phys. Rev. Lett. 96, 056403 (2006).

    Article  Google Scholar 

  21. N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri: “Nanoparticle-in-alloy” approach to efficient thermoelectrics: Silicides in SiGe. Nano Lett. 9, 711 (2009).

    Article  CAS  Google Scholar 

  22. C.W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692 (1997).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work at University of Virginia is supported by a subcontract from a RTI International thermoelectric project sponsored by Honeywell under the auspices of the Army Research Lab. The work at Clemson University is supported by DOE/EPSCoR Implementation Grant (No. DE-FG02-04ER-46139) and the SC EPSCoR cost-sharing program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Joseph Poon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poon, S.J., Wu, D., Zhu, S. et al. Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials. Journal of Materials Research 26, 2795–2802 (2011). https://doi.org/10.1557/jmr.2011.329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.329

Keywords

Navigation