Skip to main content
Log in

Molecular dynamics simulations of gold-catalyzed growth of silicon bulk crystals and nanowires

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The growth kinetics of Si bulk crystals and nanowires (NWs) in contact with Au–Si liquids is studied by molecular dynamics simulations using an empirical potential fitted to the Au–Si binary phase diagram. The growth speed v is predicted as a function of Si concentration xSi in the Au–Si liquid at temperature T = 1100 K and as a function of T at xSi = 75%. For both bulk crystals and NWs, the {111} surface grows by the nucleation and expansion of a single two-dimensional island at small supersaturations, whereas the {110} surface grows simultaneously at multiple sites. The top surfaces of the NWs are found to be curved near the edges. The difference in the growth velocity between NWs and bulk crystals can be explained by the shift of the liquidus curve for NWs. For both bulk crystals and NWs, the growth speed diminishes in the low temperature limit because of reduced diffusivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

Similar content being viewed by others

References

  1. C.M. Lieber and Z.L. Wang: Functional nanowires. MRS Bull. 32, 99 (2007).

    Article  CAS  Google Scholar 

  2. H.S.P Wong: Beyond the conventional transistor. IBM J. Res. Dev. 46, 133 (2002).

    Article  CAS  Google Scholar 

  3. V. Schmidt, J.V. Wittemann, S. Senz, and U. Gosele: Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681 (2009).

    Article  CAS  Google Scholar 

  4. V.G. Dubrovskii and N.V. Sibirev: Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires. Phys. Rev. B 77, 035414 (2008).

    Article  Google Scholar 

  5. H. Adhikari, P.C. McIntyre, A.F. Marshall, and C.E.D Chidsey: Conditions for subeutectic growth of Ge nanowires by the vapor-liquid-solid mechanism. J. Appl. Phys. 102, 094311 (2007).

    Article  Google Scholar 

  6. S.M. Roper, S.H. Davis, S.A. Norris, A.A. Golovin, P.W. Voorhees, and M. Weis: Steady growth of nanowires via the vapor-liquid-solid method. J. Appl. Phys. 102, 034304 (2007).

    Article  Google Scholar 

  7. V. Schmidt, S. Senz, and U. Gosele: Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism. Phys. Rev. B 75, 045335 (2008).

    Article  Google Scholar 

  8. E.J. Schwalbach and P.W. Voorhees: Phase equilibrium and nucleation in VLS-grown nanowires. Nano Lett. 8, 3739 (2008).

    Article  CAS  Google Scholar 

  9. V. Schmidt, S. Senz, and U. Gösele: Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 5, 931 (2005).

    Article  CAS  Google Scholar 

  10. A. Irrera, E.F. Pecora, and F. Priolo: Control of growth mechanisms and orientation in epitaxial Si nanowires grown by electron beam evaporation. Nanotechnology 20, 136601 (2009).

    Article  Google Scholar 

  11. H. Adhikari: Ph.D. Thesis: Growth and Passivation of Germanium Nanowires, Stanford University (2008).

    Google Scholar 

  12. P. Madras, E. Dailey, and J. Drucker: Kinetically induced kinking of vapor−liquid−solid grown epitaxial Si nanowires. Nano Lett. 9, 3826 (2009).

    Article  CAS  Google Scholar 

  13. A.F. Marshall, I.A. Goldthorpe, H. Adhikari, M. Koto, Y. Wang, L. Fu, E. Olsson, and P.C. McIntyre: Hexagonal close-packed structure of Au nanocatalysts solidified after Ge nanowire vapor-liquid-solid growth. Nano Lett. (2011, in press).

    Google Scholar 

  14. C.L. Kuo and P. Clansy: MEAM molecular dynamics study of a gold thin film on a silicon substrate. Surf. Sci. 551, 39 (2004).

    Article  CAS  Google Scholar 

  15. M. Dongare, M. Neurock, and L.V. Zhigilei: Angular-dependent embedded atom method potential for atomistic simulations of metal-covalent systems. Phys. Rev. B 80, 184106 (2009).

    Article  Google Scholar 

  16. T. Haxhimali, D. Buta, M. Asta, P. W. Voorhees, and J. J. Hoyt: Size-dependent nucleation kinetics at nonplanar nanowire growth interfaces. Phys. Rev. E 80, 050601(R) (2009).

    Article  CAS  Google Scholar 

  17. S. Ryu and W. Cai: A gold–silicon potential fitted to the binary phase diagram. J. Phys. Condens. Matter 22, 055401 (2010).

    Article  Google Scholar 

  18. R.J. Allen, P.B. Warren, and P.R. ten Wolde: Sampling rare switching events in biochemical networks. Phys. Rev. Lett. 94, 018104 (2005).

    Article  Google Scholar 

  19. S. Auer and D. Frenkel: Quantitative prediction of crystal-nucleation rates for spherical colloids: A computational approach. Annu. Rev. Phys. Chem. 55, 333 (2004).

    Article  CAS  Google Scholar 

  20. A. Irrera, E.F. Pecora, and F. Priolo: Control of growth mechanisms and orientation in epitaxial Si nanowire grown by electron beam evaporation. Nanotechnology 20, 135601 (2009).

    Article  CAS  Google Scholar 

  21. H. Adhikari, A.H. Marshall, I.A. Goldthorpe, C.E. Chidsey, and P.C. McIntyre: Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature. ACS Nano 1, 415 (2007).

    Article  CAS  Google Scholar 

  22. M.I. Baskes: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992).

    Article  CAS  Google Scholar 

  23. J. Li: AtomEye: An efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11, 173 (2003).

    Article  Google Scholar 

  24. C.P. Lowe: An alternative approach to dissipative particle dynamics. Europhys. Lett. 47, 145 (1999).

    Article  CAS  Google Scholar 

  25. L. Ghiringhelli, C. Valeriani, E. Meijer, and D. Frenkel: Local structure of liquid carbon controls diamond nucleation. Phys. Rev. Lett. 99, 055702 (2007).

    Article  CAS  Google Scholar 

  26. I. V. Markov: Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy, 2nd ed. (World Scientific, Singapore, 2004).

    Google Scholar 

  27. K.W. Schwarz and J. Tersoff: From droplets to nanowires: Dynamics of vapor-liquid-solid growth. Phys. Rev. Lett. 102, 206102 (2009).

    Article  Google Scholar 

Download references

Acknowledgment

This work is partly supported by the Department of Energy/SciDAC project on Quantum Simulation of Mate-rials and Nanostructures and National Science Foundation/CMMI Nano Bio Materials Program CMS-0556032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seunghwa Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, S., Cai, W. Molecular dynamics simulations of gold-catalyzed growth of silicon bulk crystals and nanowires. Journal of Materials Research 26, 2199–2206 (2011). https://doi.org/10.1557/jmr.2011.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.155

Navigation