Skip to main content
Log in

Synthesis of hollow porous nanospheres of hydroxyl titanium oxalate and their topotactic conversion to anatase titania

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A one-step wet chemistry route has been explored to synthesize hollow hydroxyl titanium oxalate nanoscale spheres under mild experimental conditions. The hollow spheres were ∼200 nm in diameter, with a shell thickness of ∼30 nm. The nanospheres were formed by smaller aggregated colloidal subunits. The influence of temperature and solvent on the structure of the nanospheres was investigated. The formation of hollow interiors in the nanospheres may be rationalized by Ostwald ripening mechanism. Simple thermal treatment topotactically transformed the chemical composition into anatase TiO2. The high-order hollow porous spherical structure was preserved, with smaller crystalline anatase TiO2 nanoparticles as building units. Dense hydroxyl titanium oxalate nanospheres and their corresponding non-hollow porous anatase TiO2 nanospheres were also successfully achieved in suitable reaction conditions. The method and procedure reported herein may be extended in principle for the fabrication of other functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
TABLE I
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. F. Caruso, R.A. Caruso, and H. Mohwald: Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111 (1998).

    Article  CAS  Google Scholar 

  2. X.W. Lou, L.A. Archer, and Z.C. Yang: Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 20, 3987 (2008).

    Article  CAS  Google Scholar 

  3. Z.W. Shan, G. Adesso, A. Cabot, M.P. Sherburne, S.A.S. Asif, O.L. Warren, D.C. Chrzan, A.M. Minor, and A.P. Alivisatos: Ultrahigh stress and strain in hierarchically structured hollow nanoparticles. Nat. Mater. 7, 947 (2008).

    Article  CAS  Google Scholar 

  4. J. Goldberger, R.R. He, Y.F. Zhang, S.W. Lee, H.Q. Yan, H.J. Choi, and P.D. Yang: Single-crystal gallium nitride nanotubes. Nature 422, 599 (2003).

    Article  CAS  Google Scholar 

  5. D. Deng and J.Y. Lee: A family of aligned C-curved nanoarches. ACS Nano 3, 1723 (2009).

    Article  CAS  Google Scholar 

  6. A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, and D.A. Weitz: Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 298, 1006 (2002).

    Article  CAS  Google Scholar 

  7. H. Strohm and P. Lobmann: Porous TiO2 hollow spheres by liquid phase deposition on polystyrene latex-stabilised Pickering emulsions. J. Mater. Chem. 14, 2667 (2004).

    Article  CAS  Google Scholar 

  8. F.Q. Guo, Z.F. Zhang, H.F. Li, S.L. Meng, and D.Q. Li: A solvent extraction route for CaF2 hollow spheres. Chem. Commun. 46, 8237 (2010).

    Article  CAS  Google Scholar 

  9. J. Li and H.C. Zeng: Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc. 129, 15839 (2007).

    Article  CAS  Google Scholar 

  10. W. Cheng, K.B. Tang, Y.X. Qi, J. Sheng, and Z.P. Liu: One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J. Mater. Chem. 20, 1799 (2010).

    Article  CAS  Google Scholar 

  11. X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, L.B. Chen, and T.H. Wang: One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 114, 8084 (2010).

    Article  CAS  Google Scholar 

  12. R.B. Zheng, X.W. Meng, F.Q. Tang, L. Zhang, and J. Ren: A general, one-step and template-free route to rattle-type hollow carbon spheres and their application in lithium battery anodes. J. Phys. Chem. C 113, 13065 (2009).

    Article  CAS  Google Scholar 

  13. H.G. Yang and H.C. Zeng: Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 108, 3492 (2004).

    Article  CAS  Google Scholar 

  14. X.W. Lou, D. Deng, J.Y. Lee, J. Feng, and L.A. Archer: Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20, 258 (2008).

    Article  CAS  Google Scholar 

  15. D. Deng and J.Y. Lee: Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chem. Mater. 20, 1841 (2008).

    Article  CAS  Google Scholar 

  16. Y.X. Li, G. Chen, Q. Wang, X. Wang, A.K. Zhou, and Z.Y. Shen: Hierarchical ZnS-In2S3-CuS nanospheres with nanoporous structure: Facile synthesis, growth mechanism, and excellent photocatalytic activity. Adv. Funct. Mater. 20, 3390 (2010).

    Article  CAS  Google Scholar 

  17. F.H. Liu, G.J. Xu, J.H. Wu, Y.C. Cheng, J.J. Guo, and P. Cui: Preparation and electrorheological properties of a hydroxyl titanium oxalate suspension. Smart Mater. Struct. 18, 125015 (2009).

    Article  Google Scholar 

  18. W.J. Wen, X.X. Huang, S.H. Yang, K.Q. Lu, and P. Sheng: The giant electrorheological effect in suspensions of nanoparticles. Nat. Mater. 2, 727 (2003).

    Article  CAS  Google Scholar 

  19. D. Zhang, H.D. Su, and H. Gao: Study on adsorption behavior of nanosized barium-strontium titanate powder for lead ion in water using FAAS. Spectrosc. Spectr. Anal. 28, 218 (2008).

    CAS  Google Scholar 

  20. X. Chen and S.S. Mao: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).

    Article  CAS  Google Scholar 

  21. D. Deng, M.G. Kim, J.Y. Lee, and J. Cho: Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2, 818 (2009).

    Article  CAS  Google Scholar 

  22. C.W. Peng, M. Richard-Plouet, T.Y. Ke, C.Y. Lee, H.T. Chiu, C. Marhic, E. Puzenat, F. Lemoigno, and L. Brohan: Chimie douce route to sodium hydroxo titanate nanowires with modulated structure and conversion to highly photoactive titanium dioxides. Chem. Mater. 20, 7228 (2008).

    Article  CAS  Google Scholar 

  23. H.L. Choi and C. Park: Effect of ultrasonic treatment on ripening of titanium oxalate salt from solution. J. Mater. Sci. 34, 3591 (1999).

    Article  CAS  Google Scholar 

  24. J.H. Choy, Y.S. Han, and S.J. Kim: Oxalate coprecipitation route to the piezoelectric Pb(Zr,Ti)O3 oxide. J. Mater. Chem. 9, 1807 (1997).

    Article  Google Scholar 

  25. T. Berger, A. Rodes, and R. Gomez: Oxalic acid photooxidation on rutile nanowire electrodes. PCCP 12, 10503 (2010).

    Article  CAS  Google Scholar 

  26. J. Fang, F. Wang, K. Qian, H.Z. Bao, Z.Q. Jiang, and W.X. Huang: Bifunctional N-doped mesoporous TiO2 photocatalysts. J. Phys. Chem. C 112, 18150 (2008).

    Article  CAS  Google Scholar 

  27. T. Thongtem and S. Thongtem: Characterization of Bi4Ti3O12 powder prepared by the citrate and oxalate coprecipitation processes. Ceram. Int. 30, 1463 (2004).

    Article  CAS  Google Scholar 

  28. X. Feng, L. Yang, and Y. Liu: A simple one-step fabrication of micrometer-scale hierarchical TiO2 hollow spheres. Mater. Lett. 64, 2688 (2010).

    Article  CAS  Google Scholar 

  29. S. Zhang, C. Liu, Y. Liu, Z. Zhang, and G. Li: Fabrication of micrometer-scale anatase-phase TiO2 congeries assembled with hollow spheres. J. Am. Ceram. Soc. 91, 2067 (2008).

    Article  CAS  Google Scholar 

  30. J. Yu and J. Zhang: A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity. Dalton Trans. 39, 5860 (2010).

    Article  CAS  Google Scholar 

  31. G. Madras and B.J. McCoy: Temperature effects during Ostwald ripening. J. Chem. Phys. 119, 1683 (2003).

    Article  CAS  Google Scholar 

  32. B. Liu and H.C. Zeng: Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductors. Small 1, 566 (2005).

    Article  CAS  Google Scholar 

  33. K.L. Roberts and E.J. Markel: Generation of Mo2N nanoparticles from topotactic Mo2N crystallites. J. Phys. Chem. 98, 4083 (1994).

    Article  CAS  Google Scholar 

  34. A. Kolmakov, Y.X. Zhang, and M. Moskovits: Topotactic thermal oxidation of Sn nanowires: Intermediate suboxides and core-shell metastable structures. Nano Lett. 3, 1125 (2003).

    Article  CAS  Google Scholar 

  35. S.M. Liu, L.M. Gan, L.H. Liu, W.D. Zhang, and H.C. Zeng: Synthesis of single-crystalline TiO2 nanotubes. Chem. Mater. 14, 1391 (2002).

    Article  CAS  Google Scholar 

  36. L. Liu, J.S. Qian, B. Li, Y.M. Cui, X.F. Zhou, X.F. Guo, and W.P. Ding: Fabrication of rutile TiO2 tapered nanotubes with rectangular cross-sections via anisotropic corrosion route. Chem. Commun. 46, 2402 (2010).

    Article  CAS  Google Scholar 

  37. B. Liu and E.S. Aydil: Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009).

    Article  CAS  Google Scholar 

  38. Z.Y. Zhong, Y.D. Yin, B. Gates, and Y.N. Xia: Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12, 206 (2000).

    Article  CAS  Google Scholar 

  39. V.G. Erkov, S.F. Devyatova, E.L. Molodstova, T.V. Malsteva, and U.A. Yanovskii: Si-TiO2 interface evolution at prolonged annealing in low vacuum or N2O ambient. Appl. Surf. Sci. 166, 51 (2000).

    Article  CAS  Google Scholar 

  40. J.Y. Zhang, I.W. Boyd, B.J. O’Sullivan, P.K. Hurley, P.V. Kelly, and J.P. Senateur: Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. J. Non-Cryst. Solids 303, 134 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scot T. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, D., Martin, S.T. & Ramanathan, S. Synthesis of hollow porous nanospheres of hydroxyl titanium oxalate and their topotactic conversion to anatase titania. Journal of Materials Research 26, 1545–1551 (2011). https://doi.org/10.1557/jmr.2011.149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.149

Navigation