Skip to main content
Log in

Viscoelastic sigmoid anomalies in BaZrO3–BaTiO3 near phase transformations due to negative stiffness heterogeneity

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

BaZrO3–BaTiO3 ceramics exhibit a shift in transformation temperatures as revealed by dielectric and viscoelastic spectroscopy; a phase diagram has been established. Sigmoid anomalies in Poisson’s ratio and bulk modulus during the ferroelastic transitions were observed in doped materials, which are not predicted by standard theories for phase transformations. “Hashin–Shtrikman” composite model with negative stiffness heterogeneity can well explain this phenomenon. Negative stiffness heterogeneity is considered to be caused by the strained BaTiO3 unit cells in the vicinity of BaZrO3-rich zones under the perturbation of lattice reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

REFERENCES

  1. R.S. Lakes: Foam structures with a negative Poisson’s ratio. Science 235, 1038 (1987).

    Article  CAS  Google Scholar 

  2. W. Drugan: Elastic composite materials having a negative stiffness can be stable. Phys. Rev. Lett. 98, 055502 (2007).

    Article  CAS  Google Scholar 

  3. T. Jaglinski, D. Kochmann, D.S. Stone, and R.S. Lakes: Materials with viscoelastic stiffness greater than diamond. Science 315, 620 (2007).

    Article  CAS  Google Scholar 

  4. L. Dong, D.S. Stone, and R.S. Lakes: Softening of bulk modulus and negative Poisson’s ratio in barium titanate ceramic near the Curie point. Philos. Mag. Lett. 90, 23 (2010).

    Article  CAS  Google Scholar 

  5. F. Kulcsar: A microstructure study of barium titanate ceramics. J. Am. Ceram. Soc. 39, 13 (1956).

    Article  CAS  Google Scholar 

  6. T. Lee, R.S. Lakes, and A. Lal: Resonant ultrasound spectroscopy for measurement of mechanical damping: Comparison with broadband viscoelastic spectroscopy. Rev. Sci. Instrum. 71, 2855 (2000).

    Article  CAS  Google Scholar 

  7. D.Z. Sun, X.B. Ren, and K. Otsuka: Stabilization effect in ferroelectric materials during aging in ferroelectric state. Appl. Phys. Lett. 87, 142903 (2005).

    Article  Google Scholar 

  8. Y. Avrahami and H.L. Tuller: US Patent No: US 6,526,833 B1, (2003).

  9. Y. Avrahami, and H.L. Tuller: Improved electromechanical response in rhombohedral BaTiO3. J. Electroceram. 13, 463 (2004).

    Article  CAS  Google Scholar 

  10. G. Arlt and D. Hennings: G. and de With: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619 (1985).

    Article  CAS  Google Scholar 

  11. T. Hoshina, K. Takizawa, J.Y. Li, T. Kasama, H. Kakemoto, and T. Tsurumi: Domain size effect on dielectric properties of barium titanate ceramics. Jpn. J. Appl. Phys. 47, 7607 (2008).

    Article  CAS  Google Scholar 

  12. K. Kinoshita and A. Yamaji: Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 47, 371 (1976).

    Article  CAS  Google Scholar 

  13. R.C. Kell and N.J. Hellicar: Structural transitions in barium titanate-zirconate transducer materials. Acustica 6, 235 (1956).

    CAS  Google Scholar 

  14. J.X. Zhang, P.C.W. Fung, and W.G. Zeng: Dissipation function of first order phase transformation in solids via internal friction measurements. Phys. Rev. B 52, 268 (1995).

    Article  CAS  Google Scholar 

  15. R.S. Lakes: Extreme damping in composite materials with a negative stiffness phase. Phys. Rev. Lett. 86, 2897 (2001).

    Article  CAS  Google Scholar 

  16. T.N. Verbitshais, S.S. Zhdanov, Iu.N. Venevtsev, and S.P. Solsviev: Phenomenological theory of successive phase transitions in dielectric materials. Sov. Phys. Crystallogr. 3, 182 (1958).

    Google Scholar 

  17. K. Yoshimoto, T.S. Jain, K.V. Workum, P.F. Nealey, and J.J. de Pablo: Mechanical heterogeneities in model polymer glasses at small length scales. Phys. Rev. Lett. 93, 175501 (2004).

    Article  Google Scholar 

  18. K.C. Goretta, E.T. Park, R.E. Koritala, M.M. Cuber, E.A. Pascual, N. Chen, A.R. de Arellano-López, and J.L. Routbort: Thermomechanical response of polycrystalline BaZrO3. Physica C 309, 245 (1998).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

Supports by the National Science Foundation-Materials Research Science and Engineering Center (NSF-MRSEC) and by NSF are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderic S. Lakes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, L., Stone, D.S. & Lakes, R.S. Viscoelastic sigmoid anomalies in BaZrO3–BaTiO3 near phase transformations due to negative stiffness heterogeneity. Journal of Materials Research 26, 1446–1452 (2011). https://doi.org/10.1557/jmr.2011.145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.145

Navigation