Skip to main content
Log in

The influence of mixed phases on optical properties of HfO2 thin films prepared by thermal oxidation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hafnium dioxide (HfO2) thin films were synthesized on silicon and quartz substrates by thermal oxidation of metallic hafnium films in oxygen. The crystalline structure and optical properties of the HfO2 films were systematically investigated using x-ray diffraction, ultraviolet (UV)-Raman, and UV-visible spectrophotometer techniques. All the films thermally oxidized at 450 to 800 °C were mostly monoclinic. Interestingly, cubic phase coexisted with monoclinic phase in the films thermally oxidized at 500 to 600 °C. The corresponding optical band gap (Eg) varied from 5.92 to 6.08 eV for the films with a different phase ratio (cubic to monoclinic one) ranging between 0 and 1:3. These results imply that the mixed phase could have a certain effect on the increase of the Eg of HfO2 films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Figure 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y-N. Tan, W-K. Chim, B.J. Cho, and W-K. Choi: Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer. IEEE Trans. Electron. Dev. 51(7), 5 (2004).

    Article  Google Scholar 

  2. J. Buckley, B. De Salvo, G. Ghibaudo, M. Gely, J.F. Damlencourt, F. Martin, G. Nicotra, and S. Deleonibus: Investigation of SiO2/ HfO2 gate stacks for application to non-volatile memory devices. Solid-State Electron. 49(11), 1833 (2005).

    Article  CAS  Google Scholar 

  3. R.R. Goncalves, G. Carturan, M. Montagna, M. Ferrari, L. Zampedri, S. Pelli, G.C. Righini, S.J.L. Ribeiro, and Y. Messaddeq: Erbium-activated HfO2-based waveguides for photonics. Opt. Mater. 25(2), 131 (2004).

    Article  CAS  Google Scholar 

  4. N.D. Afify, G. Dalba, C. Armellini, M. Ferrari, F. Rocca, and A. Kuzmin: Local structure around Er3+ in SiO2-HfO2 glassy wave-guides using EXAFS. Phys. Rev. B 76, 024114 (2007).

    Article  Google Scholar 

  5. S. Lange, V. Kiisk, V. Reedo, M. Kirm, J. Aarik, and I. Sildos: Luminescence of RE-ions in HfO2 thin films and some possible applications. Opt. Mater. 28(11), 1238 (2006).

    Article  CAS  Google Scholar 

  6. G.D. Wilk, R.M. Wallace, and J.M. Anthony: High-kappa gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89(10), 5243 (2001).

    Article  CAS  Google Scholar 

  7. M. Houssa, L. Pantisano, L.A. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, and M.M. Heyns: Electrical properties of high-kappa gate dielectrics: Challenges, current issues, and possible solutions. Mater. Sci. Eng., Rep. 51(4–6), 37 (2006).

    Article  Google Scholar 

  8. Z.S. Liu, S. Tibuleac, D. Shin, P.P. Young, and R. Magnusson: High-efficiency guided-mode resonance filter. Opt. Lett. 23(19), 1556 (1998).

    Article  CAS  Google Scholar 

  9. P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, and C. Amra: High-reflectivity HfO2/SiO2 ultraviolet mirrors. Appl. Opt. 41(16), 3256 (2002).

    Article  CAS  Google Scholar 

  10. L. Yuan, Y.N. Zhao, G.Q. Shang, C.R. Wang, H.B. He, J.D. Shao, and Z.X. Fan: Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector. J. Opt. Soc. Am. B 24(3), 538 (2007).

    Article  CAS  Google Scholar 

  11. J.M. Khoshman, A. Khan, and M.E. Kordesch: Amorphous hafnium oxide thin films for antireflection optical coatings. Surf. Coat. Technol. 202(11), 2500 (2008).

    Article  CAS  Google Scholar 

  12. M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, F. Bridou, and M.F. Ravet: Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films. Appl. Surf. Sci. 253(1), 328 (2006).

    Article  CAS  Google Scholar 

  13. X. Luo, A.A. Demkov, D. Triyoso, P. Fejes, R. Gregory, and S. Zollner: Combined experimental and theoretical study of thin hafnia films. Phys. Rev. B 78, 245314 (2008).

    Article  Google Scholar 

  14. X.Y. Zhao and D. Vanderbilt: First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B 65(23), 233106 (2002).

    Article  Google Scholar 

  15. A. Jayaraman, S.Y. Wang, S.K. Sharma, and L.C. Ming: Pressure-induced phase-transformations in HfO2 to 50 GPa studied by Raman-spectroscopy. Phys. Rev. B 48(13), 9205 (1993).

    Article  CAS  Google Scholar 

  16. P. Tyagi and A.G. Vedeshwar: Effect of residual stress on the optical properties of Cdl2 films. Phys. Rev. B 66, 075422 (2002).

    Article  Google Scholar 

  17. J. Aarik, H. Mandar, M. Kirm, and L. Pung: Optical characterization of HfO2 thin films grown by atomic layer deposition. Thin Solid Films 466(1–2), 41 (2004).

    Article  CAS  Google Scholar 

  18. G. He, L.Q. Zhu, M. Liu, Q. Fang, and L.D. Zhang: Optical and electrical properties of plasma-oxidation derived HfO2 gate dielectric films. Appl. Surf. Sci. 253(7), 3413 (2007).

    Article  CAS  Google Scholar 

  19. V. Cosnier, M. Olivier, G. Theret, and B. Andre: HfO2-SiO2 interface in PVD coatings. J. Vac. Sci. Technol, A 19(5), 2267 (2001).

    Article  CAS  Google Scholar 

  20. N.V. Nguyen, A.V. Davydov, D. Chandler-Horowitz, and M.M. Frank: Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon. Appl. Phys. Lett. 87 (19), 192903 (2005).

    Article  Google Scholar 

  21. I. Kosacki, V. Petrovsky, and H.U. Anderson: Band gap energy in nanocrystallineZrO2:16%Y thin films. Appl. Phys. Lett. 74(3), 341 (1999).

    Article  CAS  Google Scholar 

  22. C.V. Ramana, R.S. Vemuri, I. Fernandez, and A.L. Campbell: Size-effects on the optical properties of zirconium oxide thin films. Appl. Phys. Lett. 95(23), 231905 (2009).

    Article  Google Scholar 

  23. J.W. Park, D.K. Lee, D. Lim, H. Lee, and S.H. Choi: Optical properties of thermally annealed hafnium oxide and their correlation with structural change. J. Appl. Phys. 104(3), 033521 (2008).

    Article  Google Scholar 

  24. J.E. Jaffe, R.A. Bachorz, and M. Gutowski: Low-temperature polymorphs of ZrO2 and HfO2: A density-functional theory study. Phys. Rev. B 72, 144107 (2005).

    Article  Google Scholar 

  25. A.A. Demkov, L.R.C. Fonseca, E. Verret, J. Tomfohr, and O.F. Sankey: Complex band structure and the band alignment problem at the Si-high-yt dielectric interface. Phys. Rev. B 71, 195306 (2005).

    Article  Google Scholar 

  26. A.A. Demkov: Investigating alternative gate dielectrics: A theoretical approach. Phys. Status Solidi B: Basic Res. 226(1), 57 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSAF Joint Funds of the National Natural Science Foundation of China (Grant No. 10776010) and partly by State Key Laboratory of Surface Engineering Technology, China (Grant No. 9140C5401010801), and Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, China, (Grant No. LZUMMM2010023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erqing Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Ma, Z., Su, Y. et al. The influence of mixed phases on optical properties of HfO2 thin films prepared by thermal oxidation. Journal of Materials Research 26, 50–54 (2011). https://doi.org/10.1557/jmr.2010.61

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.61

Navigation