Skip to main content

Advertisement

Log in

Nanomaterials and structures for the fourth innovation of polymer electrolyte fuel cell

  • Invited Feature Paper
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polymer electrolyte fuel cells (PEFCs) are drawing attention as energy conversion devices for next generations because of their highly efficient, environmentally benign, and portable features. In the last five decades, three distinguishable innovations were achieved in terms of proton conductive membranes and electrodes: introduction of perfluorinated membranes into PEFCs, adoption of ionomers for electrodes, and increased toughness of membranes by reinforced membranes. The efficiency, cost, and durability achieved from the past three innovations are still not enough to replace competing technologies such as combustion engines. In this review, the authors would elucidate the three different methods based on nanotechnology to overcome the limits: nanoporous carbon-supported catalysts, nanocomposite membranes, and nanostructured membrane electrode assemblies, which will bring the fourth innovation to PEFCs. With the innovation, PEFCs will fulfill the goals of being clean-energy conversion devices in the major applications of stationary, portable, and vehicle markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Energy Agency World Energy Outlook(OECD Publishing, Paris, France 2008) 78

    Google Scholar 

  2. U.S. Energy Information Administration Monthly Energy Review April 2010(Department of Energy, Washington, DC 2010) 3 31, 33

    Google Scholar 

  3. G. Sandstede, E.J. Cairns, V.S. Bagotsky, K. Wiesener: History of low temperature fuel cells, Handbook of Fuel Cells—Fundamentals, Technology and ApplicationVol. 1edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (John Wiley & Sons, New York 2003) Chap. 12 146–218

    Google Scholar 

  4. J.M. Andujar, F. Segura: Fuel cells: History and updating. A walk along two centuries. Renewable Sustainable Energy Rev.132309 (2009)

    Article  CAS  Google Scholar 

  5. W.T. Grubb Jr.: Fuel cell. U.S. Patent No. 2,913,511 (1959)

    Google Scholar 

  6. E.J. Cairns, D.L. Douglas, L.W. Niedrach: Performance of fractional watt ion exchange membrane fuel cells. AIChE J.7551 (1961)

    Article  CAS  Google Scholar 

  7. D.J. Connolly, W.F. Gresham: Fluorocarbon vinyl ether polymers. U.S. Patent No. 3,282,875 (1966)

    Google Scholar 

  8. M. Doyle, G. Rajendran: Perfluorinated membranes, Handbook of Fuel Cells—Fundamentals, Technology and ApplicationVol. 3edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (John Wiley & Sons, New York 2003) Chap. 30 351–395

    Google Scholar 

  9. R.G. Rajendran: Polymer electrolyte membrane technology for fuel cells. MRS Bull.30587 (2005)

    Article  CAS  Google Scholar 

  10. P.W.T. Lu, S. Srinivasan: Advances in water electrolysis technology with emphasis on use of the solid polymer electrolyte. J. Appl. Electrochem.9269 (1979)

    Article  CAS  Google Scholar 

  11. I.D. Raistrick: Electrode assembly for use in a solid polymer electrolyte fuel cell. U.S. Patent No. 4,876 115 (1989)

    Google Scholar 

  12. M.S. Wilson: Membrane catalyst layer for fuel cell. U.S. Patent No. 5,211,984 (1993)

    Google Scholar 

  13. J.A. Kolde, B. Bahar, M.S. Wilson, T.A. Zawodzinski, S. Gottesfeld: Proceedings of the First International Symposium on Proton Exchange Membrane Fuel CellsVol. 95–23edited by S. Gottesfeld, G. Halpert, and A. Lardgrebe (The Electrochemical Society, Pennington, NJ 1995) 193

    Google Scholar 

  14. U. Beuscher, S.J.C. Cleghorn, W.B. Johnson: Challenges for PEM fuel cell membrane. Int. J. Energy Res.291103 (2005)

    Article  Google Scholar 

  15. B.C.H. Steele: The enabling technology for the commercialization of fuel cell system. J. Mater. Sci.361053 (2001)

    Article  CAS  Google Scholar 

  16. E. Antolini: Carbon supports for low-temperature fuel cell catalysts. Appl. Catal., B881 (2009)

    Article  CAS  Google Scholar 

  17. S. Barsi, S.K. Kamarudin, W.R.W. Daud, Z. Yaakub: Nanocatalyst for direct methanol fuel cell (DMFC). Int. J. Hydrogen Energy357957 (2010 DOI: 10.1016/ j.ijhydene.2010.05.111 )

    Article  CAS  Google Scholar 

  18. H. Chang, S.H. Joo, C. Pak: Synthesis and characterizations of mesoporous carbon for fuel-cell applications. J. Mater. Chem.173078 (2007)

    Article  CAS  Google Scholar 

  19. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature412169 (2001)

    Article  CAS  Google Scholar 

  20. R. Ryoo, S.H. Joo, S. Jun: Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B1037743 (1999)

    Article  CAS  Google Scholar 

  21. R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec: Ordered mesoporous carbon. Adv. Mater.13677 (2001)

    Article  CAS  Google Scholar 

  22. H.F. Yang, D.Y. Zhao: Synthesis of replica mesostructures by the nanocasting strategy. J. Mater. Chem.151217 (2005)

    CAS  Google Scholar 

  23. A.H. Lu, F. Schuth: Nanocasting: A versatile strategy for creating nanostructured porous materials. Adv. Mater.181793 (2006)

    Article  CAS  Google Scholar 

  24. C. Pak, J.M. Kim, H. Chang: Mesoporous carbon-supported catalyst for direct methanol fuel cells, Electrocatalysis of Direct Methanol Fuel Cellsedited by H. Liu and J. Zhang (Wiley-VCH, Weinheim 2009) Chap. 9 355–378

    Book  Google Scholar 

  25. C. Pak, D.J. Yoo, S-A. Lee, J.M. Kim, H. Chang: Novel Pt supported catalyst using mesoporous carbon for direct methanol fuel cell. Samsung J. Innovative Tech.1239 (2005)

    Google Scholar 

  26. S.H. Joo, H.I. Lee, D.J. You, K. Kwon, J.H. Kim, Y.S. Choi, M. Kang, J.M. Kim, C. Pak, H. Chang, D. Seung: Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes. Carbon462034 (2008)

    Article  CAS  Google Scholar 

  27. S.H. Joo, C. Pak, D.J. You, S-A. Lee, H.I. Lee, J.M. Kim, H. Chang, D. Seung: Ordered mesoporous carbons (OMC) as supports of electrocatalysts for direct methanol fuel cells (DMFC): Effect of carbon precursors of OMC on DMFC performances. Electrochim. Acta521618 (2006)

    Article  CAS  Google Scholar 

  28. C. Pak: High loading supported carbon catalyst, method of preparing the same, catalyst electrode including the same, and fuel cell including the catalyst electrode. U.S. Patent No.7,132 385 (2006)

    Google Scholar 

  29. H-T. Kim, D.J. You, H-K. Yoon, S.H. Joo, C. Pak, H. Chang, I-S. Song: Cathode catalyst layer using supported Pt catalyst on ordered mesoporous carbon for direct methanol fuel cell. J. Power Sources180724 (2008)

    Article  CAS  Google Scholar 

  30. H.I. Lee, J.H. Kim, D.J. You, J.E. Lee, J.M. Kim, W-S. Ahn, C. Pak, S.H. Joo, H. Chang, D. Seung: Rational synthesis pathway for ordered mesoporous carbon with controllable 30- to 100-angstrom pores. Adv. Mater.20757 (2008)

    Article  CAS  Google Scholar 

  31. H.I. Lee, S.H. Joo, J.H. Kim, D.J. You, J.M. Kim, J-N. Park, H. Chang, C. Pak: Ultrastable Pt nanoparticles supported on sulfur-containing ordered mesoporous carbon via strong metal-support interaction. J. Mater. Chem.195934 (2009)

    Article  CAS  Google Scholar 

  32. T.J. Pinnavaia: Intercalated clay catalysts. Science220365 (1983)

    Article  CAS  Google Scholar 

  33. A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, O.J. Kamigaito: Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid. Appl. Polym. Sci.55119 (1995)

    Article  CAS  Google Scholar 

  34. E. Petrovicova, R. Knight, L.S. Schadler, T.E. Twardowski: Nylon 11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties. J. Appl. Polym. Sci.782272 (2000)

    Article  CAS  Google Scholar 

  35. R.A. Vaia, K.D. Jaudt, E.J. Kramer, E.P. Giannelis: Microstructural evolution of melt intercalated polymer–organically modified layered silicates nanocomposites. Chem. Mater.82628 (1996)

    Article  CAS  Google Scholar 

  36. S.D. Burnside, H.C. Wang, E.P. Giannelis: Direct polymer intercalation in single crystal vermiculite. Chem. Mater.111055 (1999)

    Article  CAS  Google Scholar 

  37. M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath: Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev.1044587 (2004)

    Article  CAS  Google Scholar 

  38. P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, S. Kaliaguine: Sulfonated poly(aryl ether ketone)s containing naphthalene moieties obtained by direct copolymerization as novel polymers for proton exchange membranes. J. Polym. Sci., Part A: Polym. Chem.422866 (2004)

    Article  CAS  Google Scholar 

  39. M. Ueda, H. Toyota, T. Ouchi, J. Sugiyama, K. Yonetake, T. Masuko, T. Teramoto: Synthesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium sulfonate groups. J. Polym. Sci., Part A: Polym. Chem.31853 (1993)

    Article  CAS  Google Scholar 

  40. F. Wang, T. Chen, J. Xu: Sodium sulfonate-functionalized poly(ether ether ketone)s. Macromol. Chem. Phys.1991421 (1998)

    Article  CAS  Google Scholar 

  41. T. Kobayashi, M. Rikukawa, K. Sanui, N. Ogata: Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene). Solid State Ionics106219 (1998)

    Article  CAS  Google Scholar 

  42. H. Ghassemi, J.E. McGrath: Synthesis and properties of new sulfonated poly(p-phenylene) derivatives for proton exchange membranes. I. Polymer455847 (2004)

    Article  CAS  Google Scholar 

  43. H. Ghassemi, G. Ndip, J.E. McGrath: New multiblock copolymers of sulfonated poly(4′-phenyl-2,5-benzophenone) and poly(arylene ether sulfone) for proton exchange membranes. II. Polymer455855 (2004)

    Article  CAS  Google Scholar 

  44. K. Miyatake, A.S. Hay: Synthesis and properties of poly(arylene ether)s bearing sulfonic acid groups on pendant phenyl rings. J. Polym. Sci., Part A: Polym. Chem.393211 (2001)

    Article  CAS  Google Scholar 

  45. K. Miyatake, K. Oyaizu, E. Tsuchida, A.S. Hay: Synthesis and properties of novel sulfonated arylene ether/fluorinated alkane copolymers. Macromolecules342065 (2001)

    Article  CAS  Google Scholar 

  46. Y. Gao, G.P. Robertson, M.D. Guiver, X. Jian: Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials. J. Polym. Sci., Part A: Polym. Chem.41497 (2003)

    Article  CAS  Google Scholar 

  47. Y.S. Choi, T.K. Kim, E.A. Kim, S.H. Joo, C. Pak, Y.H. Lee, H. Chang, D. Seung: Exfoliated sulfonated poly(arylene ether sulfone)–clay nanocomposites. Adv. Mater.202341 (2008)

    Article  CAS  Google Scholar 

  48. B.K.G. Theng: Formation and Properties of Clay-Polymer Complexes(Elsevier Scientific Pub. Co, New York 1979)

    Google Scholar 

  49. Y.S. Choi, H.T. Ham, I.J. Chung: Effect of monomers on the basal spacing of sodium montmorillonite and the structures of polymer–clay nanocomposites. Chem. Mater.162522 (2004)

    Article  CAS  Google Scholar 

  50. R.D.S. Laponite: Product bulletin: Laponite. http://www.scprod.com/product_bulletins/PB%20Laponite%20RDS.pdf

  51. O. Yamamoto: Low temperature electrolytes and catalysts, Handbook of Fuel Cells—Fundamentals, Technology and ApplicationVol. 4edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (John Wiley & Sons, New York 2003) Chap. 71 1002–1014

    Google Scholar 

  52. T. Kawada, J. Mizusaki: Current electrolytes and catalysts, Handbook of Fuel Cells—Fundamentals, Technology and ApplicationVol. 4edited by W. Vielstich, A. Lamm, and H.A. Gasteiger (John Wiley & Sons, New York 2003) Chap. 70 987–1001

    Google Scholar 

  53. B.C.H. Steele, A. Heinzel: Materials for fuel-cell technologies. Nature414345 (2001)

    Article  CAS  Google Scholar 

  54. H.I. Yoo, J.H. Hwang: Thermoelectric behavior of single crystalline ZrO2 (+8mo Y2O3). J. Phys. Chem. Solids53973 (1992)

    Article  CAS  Google Scholar 

  55. K.D. Kreuer: Proton-conducting oxides. Annu. Rev. Mater. Res.33333 (2003)

    Article  CAS  Google Scholar 

  56. J.H. Shim, J.S. Park, J. An, T.M. Gur, S. Kang, F.B. Prinz: Intermediate-temperature ceramic fuel cells with thin film yttrium-doped barium zirconate electrolytes. Chem. Mater.213290 (2009)

    Article  CAS  Google Scholar 

  57. P.C. Su, C.C. Chao, J.H. Shim, R. Fasching, F.B. Prinz: Solid oxide fuel cell with corrugated thin film electrolyte. Nano Lett.82289 (2008)

    Article  CAS  Google Scholar 

  58. S. Rey-Mermet, P. Muralt: Solid oxide fuel cell membranes supported by nickel gird anode. Solid State Ionics1791497 (2006)

    Article  CAS  Google Scholar 

  59. U.P. Muecke, D. Beckel, A. Bernard, A. Bieberle-Hutter, S. Graf, A. Infortuna, P. Müller, J.L.M. Rupp, J. Schneider, L.J. Gauckler: Micro solid oxide fuel cells on glass ceramic substrates. Adv. Funct. Mater.181 (2008)

    Article  CAS  Google Scholar 

  60. C-W. Kwon, J-W. Son, D-J. Lee, K-B. Kim, J-H. Lee, H-W. Lee: Fabrication of thin film SOFC by using AAO as electrode template, Proceedings of European Fuel Cell Forumedited by T.S. Irvine (Lucerne, Switzerland 2008) B0519

    Google Scholar 

  61. A. Evans, A. Bieberle-Hütter, J.L.M. Rupp, L.J. Gauckler: Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources194119 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuk Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pak, C., Kang, S., Choi, Y.S. et al. Nanomaterials and structures for the fourth innovation of polymer electrolyte fuel cell. Journal of Materials Research 25, 2063–2071 (2010). https://doi.org/10.1557/jmr.2010.0280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0280

Navigation