Skip to main content
Log in

Olivine electrode engineering impact on the electrochemical performance of lithium-ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High energy and power density lithium iron phosphate was studied for hybrid electric vehicle applications. This work addresses the effects of porosity in a composite electrode using a four-point probe resistivity analyzer, galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The four-point probe result indicates that the porosity of composite electrode affects the electronic conductivity significantly. This effect is also observed from the cell’s pulse current discharge performance. Compared to the direct current (dc) methods used, the EIS data are more sensitive to electrode porosity, especially for electrodes with low porosity values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S-Y. Chung, J.T. Bloking, Y-M. Chiang: Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater.1123 (2002)

    Article  CAS  Google Scholar 

  2. A. Yamada, S.C. Chung, K. Hinokuma: Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc.148, (3) A224 (2001)

    Article  CAS  Google Scholar 

  3. N. Ravet, J.B. Goodenough, S. Besner, M. Simoneau, P. Hovington, M. Armand: Abstract 127 The Electrochemical Society and the Electrochemical Society of Japan Meeting AbstractsVol. 99-2 (Honolulu, HI 1999)

  4. L.F. Nazar, G. Goward, F. Leroux, M. Duncan, H. Huang, T. Kerr, J. Gaubicher: Nanostructured materials for energy storage. Int. J. Inorg. Mater.3, (3) 191 (2001)

    Article  CAS  Google Scholar 

  5. Y.H. Chen, C.W. Wang, G. Liu, X.Y. Song, V.S. Battaglia, A.M. Sastry: Selection of conductive additives in Li-ion battery cathodes—A numerical study. J. Electrochem. Soc.154, (10) A978 (2007)

    Article  CAS  Google Scholar 

  6. G. Liu, H. Zheng, A.S. Simens, A.M. Minor, X. Song, V.S. Battaglia: Optimization of acetylene black conductive additive and PVDF composition for high-power rechargeable lithium-ion cells. J. Electrochem. Soc.154, (12) A1129 (2007)

    Article  CAS  Google Scholar 

  7. D. Dees, E. Gunen, D. Abraham, A. Jansen, J. Prakash: Alternating current impedance electrochemical modeling of lithium-ion positive electrodes. J. Electrochem. Soc.152, (7) A1409 (2005)

    Article  CAS  Google Scholar 

  8. D. Abraham, S-H. Kang: Unpublished results (Argonne National Laboratory (2008)

    Google Scholar 

  9. FreedomCAR Battery Test Manual for Power-Assist Hybrid Electric VehiclesINEEL, DOE/ID-11069, Rev. 3 (2003)

  10. K. Striebel, J. Shim, A. Sierra, H. Yang, X. Song, R. Kostecki, K. McCarthy: The development of low cost LiFePO4-based high power lithium-ion batteries. J. Power Sources14633 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenquan Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Jansen, A., Dees, D. et al. Olivine electrode engineering impact on the electrochemical performance of lithium-ion batteries. Journal of Materials Research 25, 1656–1660 (2010). https://doi.org/10.1557/JMR.2010.0214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0214

Navigation