Skip to main content
Log in

Enthalpies of formation of CdSxSe1–x solid solutions

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The enthalpies of oxidative drop solution (ΔHds) for a series of CdSxSe1–x samples were obtained by calorimetry in molten 3Na2O·4MoO3 at 975 K. They become more exothermic linearly with increasing S content. The enthalpies of formation from the elements (ΔHf,el) depend linearly on molar ratio of S/(S + Se). This is the first report of thermodynamic properties of CdSxSe1–x solid solutions measured by any direct calorimetric method. The enthalpies of formation at 298 K from the binary chalcogenide end-members (ΔHf,CdM) (M = S, Se) for wurtzite CdSxSe1–x are found to be zero within experimental errors. These results strongly suggest that wurtzite CdS and CdSe form an ideal solid solution, despite a substantial difference in molar volume and anion radius. This implies that size difference affects thermodynamics less strongly when larger and more polarizable anions are mixed in chalcogenides than when cations are mixed in oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.S. Mane and C.D. Lokhande: Studies on chemically deposited cadmium sulphoselenide (CdSSe) films. Thin Solid Films 304, 56 (1997).

    Article  CAS  Google Scholar 

  2. A.L. Pan, R.B. Liu, F.F. Wang, S.S. Xie, B.S. Zou, M. Zacharias, and Z.L. Wang: High-quality alloyed CdSxSe1-x whiskers as waveguides with tunable stimulated emission. J. Phys. Chem. B 110, 22313 (2006).

    Article  CAS  Google Scholar 

  3. G. Mei: A photoluminescence study of CdSxSe1-x semiconductor quantum dots. J. Phys. Condens. Matter 4, 7521 (1992).

    Article  CAS  Google Scholar 

  4. M. Nogami, A. Kato, and Y. Tanaka: Sol-gel preparation of CdSxSe1-x solid-solution microcrystal-doped glasses. J. Mater. Sci. 28, 4129 (1993).

    Article  CAS  Google Scholar 

  5. G. Perna, S. Pagliara, V. Capozzi, M. Ambrico, and T. Ligonzo: Optical characterization of CdSxSe1-x films grown on quartz substrate by pulsed laser ablation technique. Thin Solid Films 349, 220 (1999).

    Article  CAS  Google Scholar 

  6. Inorganic Synthesis, edited by G. Hodes, J. Manssen, and D. Cahen (Wiley, New York, 1983).

    Google Scholar 

  7. K. Premaratne, S.N. Akuranthilaka, I.M. Dharmadasa, and A.P. Samantilleka: Electrodeposition using non-aqueous solutions at 170 degrees C and characterization of US, CdSxSe1-x) and CdSe compounds for use in graded band gap solar cells. Renewable Energy 29, 549 (2003).

    Article  CAS  Google Scholar 

  8. P. Roussignol, D. Ricard, and C. Flytzanis: Quantum confinement mediated enhancement of optical Kerr effect in CdSxSe1-xsemiconductor microcrystallites. Appl. Phys. B 51, 437 (1990).

    Article  Google Scholar 

  9. B. Vaynberg, M. Matusovsky, M. Rosenbluh, E. Kolobkova, and A. Lipovskii: High optical nonlinearity of CdSxSe1-xmicrocrystals in fluorine-phosphate glass. Opt. Commun. 132, 307 (1996).

    Article  CAS  Google Scholar 

  10. R. Westphaling, S. Bauer, C. Klingshirn, A. Reznitsky, and S. Verbin: Photoluminescence quantum efficiency of various ternary II-VI semiconductor solid solutions. J. Cryst. Growth 185, 1072 (1998).

    Google Scholar 

  11. C.E. Hurwitz: Efficient visible lasers of CdSxSe1-x by electron-beam excitation. Appl. Phys. Lett. 8, 243 (1966).

    Article  CAS  Google Scholar 

  12. W.D. Johnston: Characteristics of optically pumped platelet lasers of ZnO, CdS, CdSe, and CdS0.6Se0.4 between 300 degrees and 80 degrees K. J. Appl. Phys. 42, 2731 (1971).

    Article  CAS  Google Scholar 

  13. C.B. Roxlo, R.S. Putnam, and M.M. Salour: Optically pumped semiconductor platelet lasers. IEEE J. Quantum Electron. 18, 338 (1982).

    Article  Google Scholar 

  14. J. Dutta, R. Pal, S. Chattopadhyay, S. Chaudhuri, and A.K. Pal: Studies on CdSxSe1-x films prepared by 2-zone hot-wall technique. Phys. Status Solidi A 139, 109 (1993).

    Article  CAS  Google Scholar 

  15. P. Gupta, S. Chaudhuri, and A.K. Pal: Photoconductivity in CdSxSe1-x films. J. Phys. D: Appl. Phys. 26, 1709 (1993).

    Article  CAS  Google Scholar 

  16. E.T. Handelman and W. Kaiser: Optical absorption of CdS-CdSe mixed crystals prepared by solid-state diffusion. J. Appl. Phys. 35, 3519 (1964).

    Article  CAS  Google Scholar 

  17. Y. Liu, Y. Xu, J.P. Li, B. Zhang, D. Wu, and Y.H. Sun: Synthesis of CdSxSe1-x nanorods via a solvothermal route. Mater. Res. Bull. 41, 99 (2006).

    Article  CAS  Google Scholar 

  18. G. Perna, S. Pagliara, V. Capozzi, H. Ambrico, and M. Pallara: Excitonic luminescence of CdSxSe1-x films deposited by laser ablation on Si substrate. Solid State Commun. 114, 161 (2000).

    Article  CAS  Google Scholar 

  19. Y.V. Korostelin and V.I. Kozlovsky: Vapour growth of II-VI solid solution single crystals by contact-free technique. J. Alloys Compd. 371, 25 (2004).

    Article  CAS  Google Scholar 

  20. L.S. Hersh, A. Navrotsky, and O.J. Kleppa: Enthalpies of mixing in silver bromide-alkali bromide and thallium chloride-alkali chloride liquid mixtures. J. Chem. Phys. 42, 3752 (1965).

    CAS  Google Scholar 

  21. A. Navrotsky: Thermodynamics of A3O4-B3O4 spinel solid solutions. J. Inorg. Nucl. Chem. 31, 59 (1969).

    CAS  Google Scholar 

  22. M.V. Rane and A. Navrotsky: Enthalpies of formation of lead zirconate titanate (PZT) solid solutions. J. Solid State Chem. 161, 402 (2001).

    CAS  Google Scholar 

  23. T.A. Lee, A. Navrotsky, and I. Molodetsky: Enthalpy of formation of cubic yttria-stabilized zirconia. J. Mater. Res. 18, 908 (2003).

    Article  CAS  Google Scholar 

  24. M.J. Wang and A. Navrotsky: Enthalpy of formation of LiNiO2, LiCoO2 and their solid solutions LiNi1-xCOxO2. Solid State Ionics 166, 167 (2004).

    Article  CAS  Google Scholar 

  25. J.J. Cheng, A. Navrotsky, X.D. Zhoum, and H.U. Anderson: Thermochemistry of La1-xSrxFeO3-d solid solutions (0.0 9 x 9 1.0, 0.0 9 d 9 0.5). Chem. Mater. 17, 2197 (2005).

    Article  CAS  Google Scholar 

  26. M.J. Wang and A. Navrotsky: Thermochemistry of Li1+xMn2-xO4 (0 9 x 9 1/3) spinel. J. Solid State Chem. 178, 1182 (2005).

    Article  CAS  Google Scholar 

  27. W. Chen and A. Navrotsky: Thermochemical study of trivalent-doped ceria systems: CeO2-MO1.5 (M = La, Gd, and Y). J. Mater. Res. 21, 3242 (2006).

    Article  CAS  Google Scholar 

  28. W. Chen, A. Navrotsky, Y.P. Xiong, and H. Yokokawa: Energetics of cerium-zirconium substitution in the xCe0.8 Y0.2O1.9-(1-x)Zr0.8Y0.2O1.9 system. J. Am. Ceram. Soc. 90, 584 (2007).

    Article  CAS  Google Scholar 

  29. P. Simoncic and A. Navrotsky: Energetics of rare-earth-doped hafnia. J. Mater. Res. 22, 876 (2007).

    Article  CAS  Google Scholar 

  30. J. Zhang, Y. Zhao, H. Xu, B. Li, D.J. Weidner, and A. Navrotsky: Elastic properties of yttrium-doped BaCeO3 perovskite. Appl. Phys. Lett. 90, 161903 (2007).

    Article  CAS  Google Scholar 

  31. L. Mazeina, A. Navrotsky, and M. Greenblatt: Calorimetric determination of energetics of solid solutions of UO2+x with CaO and Y2O3. J. Nucl. Mater. 373, 39 (2008).

    Article  CAS  Google Scholar 

  32. S. Deore and A. Navrotsky: Oxide melt solution calorimetry of sulfides: Enthalpy of formation of sphalerite, galena, greenockite, and hawleyite. Am. Mineral. 91, 400 (2006).

    Article  CAS  Google Scholar 

  33. S. Deore, F. Xu, and A. Navrotsky: Oxide melt solution calorimetry of selenides: Enthalpy of formation of zinc, cadmium, and lead selenide. Am. Mineral. 93, 779 (2008).

    Article  CAS  Google Scholar 

  34. K. Mochizuki: Composition control of CdSxSe1-x thin-layers grown on CdS substrate by a solid-state diffusion technique. Jpn. J. Appl. Phys., Part 1 21, 639 (1982).

    Article  CAS  Google Scholar 

  35. K. Mochizuki, E. Suzuki, M. Masumoto, and T. Kiyosawa: Solid-vapor equilibrium-constant for II-VI ternary solid-solutions. Mater. Lett. 9, 526 (1990).

    Article  CAS  Google Scholar 

  36. M.M. El-Nahass: Structural and electrical-properties of cadmiumsulfo-selenide solid-solutions. J. Mater. Sci.-Mater. Electron. 3, 71 (1992).

    Article  CAS  Google Scholar 

  37. A. Navrotsky: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 2, 89 (1977).

    Article  CAS  Google Scholar 

  38. A. Navrotsky: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 (1997).

    Article  CAS  Google Scholar 

  39. A.R. Denton and N.W. Ashcroft: Vegard’s law. Phys. Rev. A: At. Mol. Opt. Phys. 43, 3161 (1991).

    Article  CAS  Google Scholar 

  40. L. Vegard: X-rays in the service of research on matter. Z. Kristallogr. 67, 239 (1928).

    Google Scholar 

  41. R.I. Khansevarov, S.M. Ryvkin, and I.N. Ageeva: The dependence of the width of the forbidden zone on the composition in the solid solutions CdS-CdSe. Soviet Phys. Tech. Phys. 3, 453 (1958).

    CAS  Google Scholar 

  42. K. Jug and V.A. Tikhomirov: Anion substitution in zinc chalcogenides. J. Comput. Chem. 27, 1088 (2006).

    Article  CAS  Google Scholar 

  43. P.K. Davies and A. Navrotsky: Quantitative correlations of deviations from ideality in binary and pseudobinary solid-solutions. J. Solid State Chem. 46, 1 (1983).

    Article  CAS  Google Scholar 

  44. P.K. Davies: Thermodynamics of solid solution formation. Ph.D., Thesis, Arizona State University, 1981.

    Google Scholar 

  45. R.D. Shannon and H. Vincent: Relationships between covalency, interatomic distances, and magnetic properties in halids and chalcogenides. Struct Bond. (Berlin) 19, 1 (1974).

    Article  CAS  Google Scholar 

  46. C. Levelut, A. Ramos, J. Petiau, and M. Robino: EXAFS study of the local-structure in CdSxSe1-x compounds. Mater. Sci. Eng., B 8, 251 (1991).

    Article  Google Scholar 

  47. P.K. Davies and A. Navrotsky: Thermodynamics of solid-solution formation in NiO-MgO and NiO-ZnO. J. Solid State Chem. 38, 264 (1981).

    Article  CAS  Google Scholar 

  48. H. Wiedemeier and A.G. Sigai: Phase studies of the systems Mn-S, Mn-Se, and MnS-MnSe. High Temp. Sci. 1, 18 (1969).

    CAS  Google Scholar 

  49. Chemical Thermodynamics of Selenium, edited by A. Olin, B. Noläng, L-O. Ōhman, E. Osadchii, and E. Rosén (Elsevier B.V., Amsterdam, 2005).

    Google Scholar 

  50. J. Majzlan, A. Navrotsky, and J.M. Neil: Energetics of anhydrite, barite, celestine, and anglesite: A high-temperature and differential scanning calorimetry study. Geochim. Cosmochim. Acta 66, 1839 (2002).

    Article  CAS  Google Scholar 

  51. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar Pressure and at Higher Temperatures, edited by R.A. Robie and B.S. Hemingway, U.S. Geol. Surv. Bull. 2131 (United States Government Printing Office, Washington, 1995).

    Google Scholar 

  52. L. Pauling: Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F., Ma, X., Kauzlarich, S.M. et al. Enthalpies of formation of CdSxSe1–x solid solutions. Journal of Materials Research 24, 1368–1374 (2009). https://doi.org/10.1557/jmr.2009.0164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0164

Navigation