Skip to main content
Log in

Scale effects for strength, ductility, and toughness in “brittle” materials

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Decreasing scales effectively increase nearly all important mechanical properties of at least some “brittle” materials below 100 nm. With an emphasis on silicon nanopillars, nanowires, and nanospheres, it is shown that strength, ductility, and toughness all increase roughly with the inverse radius of the appropriate dimension. This is shown experimentally as well as on a mechanistic basis using a proposed dislocation shielding model. Theoretically, this collects a reasonable array of semiconductors and ceramics onto the same field using fundamental physical parameters. This gives proportionality between fracture toughness and the other mechanical properties. Additionally, this leads to a fundamental concept of work per unit fracture area, which predicts the critical event for brittle fracture. In semibrittle materials such as silicon, this can occur at room temperature when the scale is sufficiently small. When the local stress associated with dislocation nucleation increases to that sufficient to break bonds, an instability occurs resulting in fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  2. E. Arzt: Overview No. 130—Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 (1998).

    Article  CAS  Google Scholar 

  3. S.G. Corcoran, R.J. Colton, E.T. Lilleodden, and W.W. Gerberich: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B: Condens. Matter 55, 16057 (1997).

    Article  Google Scholar 

  4. K.J. Hemker and W.W. Sharpe Jr.: Microscale characterization of mechanical properties. Annu. Rev. Mater. Sci. 37, 93 (2007).

    Article  CAS  Google Scholar 

  5. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A. Minor, and Y-L. Shen: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55, 4015 (2007).

    Article  CAS  Google Scholar 

  6. K. Durst, B. Backer, O. Franke, and M. Goker: Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547 (2006).

    Article  CAS  Google Scholar 

  7. T. Tsuchiya, O. Tabata, J. Sakata, and Y. Taga: Specimen-size effect on tensile strength of surface-micromachined polycrystal-line silicon thin film. J. Microelectromech. Syst. 1, 106 (1998).

    Article  Google Scholar 

  8. C.C. Koch, I.A. Ovid’ko, S. Seal, and S. Veprek: Structural Nanocrystalline Materials (Cambridge University Press, Cambridge, UK, 2007), Ch. 4.

    Book  Google Scholar 

  9. H. vanSwygenhoven and J.R. Weertman: Deformation in nanocrystalline metals. Mater. Today 9, 24 (2006).

    Article  CAS  Google Scholar 

  10. W.W. Gerberich, N.I. Tymiak, J.C. Grunlan, M.F. Horstemeyer, and M.I. Baskes: Interpretations of indentation size effects. J. Appl. Mech. 69, 433 (2002).

    Article  CAS  Google Scholar 

  11. W.W. Gerberich, D.D. Stauffer, A.R. Beaber, and W.M. Mook: Connectivity between plasticity and brittle fracture: An overview from nanoindentation studies. Proc. J. Mech. E 222, 1 (2009).

    Google Scholar 

  12. J.R. Greer and W.D. Nix: Size dependence of mechanical properties of gold at the submicron scale. Appl. Phys. A 80, 1625 (2005).

    Article  CAS  Google Scholar 

  13. M.D. Uchic, D.N. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).

    Article  CAS  Google Scholar 

  14. M. Kopycinska-Mueller, R.H. Geiss, and D.C. Hurley: Size-related plasticity effects in AFM silicon contilever tips, in Mechanics of Nanoscale Materials and Devices, edited by A. Msra, J.P. Sullivan, H. Huang, K. Lu, and S. Asif (Mater. Res. Soc. Symp. Proc. 924E, Warrendale, PA, 2006), 0924–Z03–02.

  15. B. Moser, K. Wasmer, L. Barbieri, and J. Michler: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22, 1004 (2007).

    Article  CAS  Google Scholar 

  16. W.M. Mook, M.S. Lund, C. Leighton, and W.W. Gerberich: Flow stresses and activation volumes for highly deformed nanoposts. Mater. Sci. Eng., A 493, 12 (2008).

    Article  CAS  Google Scholar 

  17. X. Han, K. Zheng, Y.F. Zhang, X. Zhang, Z. Zhang, and Z.L. Wang: Low temperature in situ large-strain plasticity of silicon nanowires. Adv. Mater. 19, 2112 (2007).

    Article  CAS  Google Scholar 

  18. F. Ostlund, K. Rzepiejewska-Malyska, K. Leifer, and J. Michler: Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Mater. (2009 submitted).

    Google Scholar 

  19. T.Y. Kim, S.S. Han, and H.M. Lee: Nanomechanical behavior of β-SiC nanowire in tension: Molecular dynamic simulations. Mater. Trans. 45, 1442 (2004).

    Article  CAS  Google Scholar 

  20. X.D. Han, Y.F. Zhang, K. Zheng, X.N. Zhang, Y. Hao, X.Y. Guo, J. Yuan, and Z.L. Wang: Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett. 7, 452 (2007).

    Article  CAS  Google Scholar 

  21. K. Kang and W. Cai: Brittle and ductile fracture of semiconductor nanowires. Molecular dynamics simulations. Philos. Mag. 87, 2169 (2007).

    Article  CAS  Google Scholar 

  22. P. Gumbsch, S. Taeri-Baghbadruni, D. Brunner, W. Sigle, and M. Ruhle: Plasticity and an inverse brittle-to-ductile transition in strontium titanate. Phys. Rev. Lett. 87, 085505 (2001).

    Article  CAS  Google Scholar 

  23. Y. Zhang, X. Han, K. Zheng, Z. Zhang, X. Zhang, J. Fu, Y. Ji, Y. Hao, X. Guo, and Z.L. Wang: Direct observation of super-plasticity of β-SiC nanowires at low temperature. Adv. Fund. Mater. 17, 3435 (2007).

    Article  CAS  Google Scholar 

  24. T. Namazu, Y. Isono, and T. Tanaka: Nano-scale bending test of Si beam for MEMS, in Annual International Conference on MEMS 2000 (IEEE, Piscataway, NJ, 2000), pp. 205–210.

    Google Scholar 

  25. T. Namazu and Y. Isono: High-cycle fatigue test of nanoscale Si and SiO2 wires based on AFM technique, in Annual International Conference on MEMS 2003 (IEEE, Piscataway, NJ, 2003), pp. 662–665.

    Google Scholar 

  26. W.M. Mook, J.D. Nowak, C.R. Perrey, C.B. Carter, R. Mukherjee, S.L. Girshick, P.H. McMurry and W.W. Gerberich: Compressive stress effect on nanoparticle modulus and fracture. Phys. Rev. B 75, 1 (2007)

    Article  CAS  Google Scholar 

  27. W.W. Gerberich, W.M. Mook, C.R. Perrey, C.B. Carter, M.I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P.H. McMurry, and G.L. Girshick: Superhard silicon nanospheres. J. Mech. Phys. Solids 51, 979 (2003).

    Article  CAS  Google Scholar 

  28. S. Nakao, T. Ando, M. Shikida, and K. Sato: Effects of temperature on fracture toughness in a single-crystal-silicon film and transition in its fracture mode. J. Micromech. and Microeng. 18, 1 (2008).

    Article  CAS  Google Scholar 

  29. P. Haasen, U. Messerschmidt, and W. Skrotzki: Low-energy dislocation structures in ionic crystals and semiconductors. Mater. Sci. Eng. 81, 493 (1986).

    Article  CAS  Google Scholar 

  30. G. Xu and C. Zhang: Analysis of dislocation nucleation from a crystal surface based on the Peierls-Nabarro dislocation model. J. Mech. Phys. Solids 51, 1371 (2003).

    Article  Google Scholar 

  31. J. Michler, K. Wasmer, S. Meier, F. Ostlund, and K. Leifer: Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl. Phys. Lett. 90(41). 1 (2007).

    Google Scholar 

  32. C.A. Schuh, J.K. Mason, and A.C. Lund: Quantitative insight into dislocation nucleation from high temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).

    Article  CAS  Google Scholar 

  33. T. Zhu, J. Li, A. Samata, A. Leach, and K. Gall: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 1 (2008).

    Google Scholar 

  34. T.F. Page, L. Riester, and S.V. Hainsworth: The plasticity response of 6H SiC and related isostructural materials to nanoindentation: Slip vs. densification, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), pp. 113–118.

    Google Scholar 

  35. M. Tanaka and K. Higashida: HVEM characterization of crack tip dislocations in silicon crystals. J. Electron Microsc. (Tokyo) 53 (4), 353 (2004).

    Article  CAS  Google Scholar 

  36. W.W. Gerberich, W.M. Mook, C.B. Carter, and R. Ballarini: A crack extension force correlation for hard materials. Int. J. Fract. 148, 109 (2007).

    Article  CAS  Google Scholar 

  37. D.D. Stauffer, A. Beaber, and W.W. Gerberich: Unpublished Data, University of Minnesota.

  38. C. Zhang and G. Xu: Energetics of dislocation nucleation under a nanoindenter. Mater. Sci. Eng., A 400–401, 471 (2005).

    Article  CAS  Google Scholar 

  39. M.J. Cordill, N.R. Moody, and W.W. Gerberich: The role of dislocation walls for nanoindentation to shallow depths. Int. J. Plast. 25, 281 (2009).

    Article  Google Scholar 

  40. S.J. Lloyd, A. Casterello, F. Guiliani, Y. Long, K.K. McLaughlin, J.M. Molina-Aldaregula, N.A. Stelmashenko, J.L. Vandepere, and W.J. Clegg: Observations of nanoindents via cross-sectional transmission electron microscopy: A survey of deformation mechanisms. Proc. R. Soc. London, Ser. A 461, 2521 (2005).

    CAS  Google Scholar 

  41. A.G. Atkins and Y.W. Mai: Elastic and Plastic Fracture: Metals, Polymers, Ceramics, Composites, Biological Materials (Ellis Horwood, Chichester; Halsted Press, New York, 1985).

    Google Scholar 

  42. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985, reprinted 2001), pp. 174–178.

    Book  Google Scholar 

  43. S. Harvey, H. Huang, S. Venkataraman, and W.W. Gerberich: Microscopy and microindentation mechanics of single crystal Fe–3 wt% Si: Part I. Atomic force microscopy of a small indentation. J. Mater. Res. 8, 1291 (1993).

    Article  CAS  Google Scholar 

  44. F.J. Lockett: Indentation of a rigid/plastic material by a conical indenter. J. Mech. Phys. Solids 11, 345 (1962).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. W. Gerberich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerberich, W.W., Michler, J., Mook, W.M. et al. Scale effects for strength, ductility, and toughness in “brittle” materials. Journal of Materials Research 24, 898–906 (2009). https://doi.org/10.1557/jmr.2009.0143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0143

Navigation