Skip to main content
Log in

Measurements of diffusion thickness at polymer interfaces by nanoindentation: A numerically calibrated experimental approach

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The interfacial fracture toughness and the adhesion strength of two dissimilar materials are governed by the diffusion interfacial thickness and its mechanical characteristics. A new testing methodology is implemented here to estimate the actual interfacial thickness from a series of nanoindentations across the interface, under the same applied load, with tip radius and indentation depth many times larger than the interface thickness. The bimaterial system used is a semicrystalline polymer interface of isotactic polypropylene and linear low-density polyethylene. The laminate is prepared under a range of diffusion temperature to yield diffusion interfaces of 0 to 50 nm. A numerical relationship is developed using two-dimensional (2D) finite element simulation to correlate the true interfacial thickness, measured by transmission electron microscopy, with the experimentally estimated apparent interfacial thickness, derived from the transition domain of a series of indents across the interface. A range of material-pairs property combinations are examined for Young’s modulus ratio E1/E2 = 1 to 3, yield strength ratio σY1Y2 = 1 to 2.5, and interfacial thickness of 0 to 100 nm. The proposed methodology and the numerically calibrated relationship are in good agreement with the true interfacial thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Evans and J.W. Hutchinson: The thermomechanical integrity of thin films and multilayers. Acta Metall. Mater. 43, 2507 (1995).

    Article  CAS  Google Scholar 

  2. J.W. Hutchinson and Z. Suo: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 1 (1992).

    Google Scholar 

  3. K.A. Chaffin, F.S. Bates, P. Brant, and G.M. Brown: Semicrystalline blends of polyethylene and isotactic polypropylene: Improving mechanical performance by enhancing the interfacial structure. J. Polym. Sci., Part B: Polym. Phys. 38(1), 108 (2000).

    Article  CAS  Google Scholar 

  4. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments., J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  5. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments., J. Mater. Res. 7(6), 1564 (1992).

    Article  CAS  Google Scholar 

  6. G.M. Pharr: Measurement of mechanical properties by ultra-low-load indentation. Mater. Sci. Eng., A 253, 151 (1998).

    Article  Google Scholar 

  7. M.D. Kriese, D.A. Boismier, N.R. Moody, and W.W. Gerberich: Nanomechanical fracture-testing of thin films. Eng. Fract. Mech. 61, 1 (1998).

    Article  Google Scholar 

  8. T.Y. Tsui, C.A. Ross, and G.M. Pharr: A method for making substrate-independent hardness measurements of soft metallic films on hard substrates by nanoindentation., J. Mater. Res. 18(6), 1383 (2003).

    Article  CAS  Google Scholar 

  9. S. Suresh and V.M. Naik: Multilayer theory for interfacial properties of systems containing hydrogen bonding molecules. II. A simple, yet exact form for segment potentials arising from association interactions., J. Chem. Phys. 111(22), 10389 (1999).

    Article  CAS  Google Scholar 

  10. S. Suresh and A. Mortensen: Functionally graded metals and metal-ceramic composites: Part 2. Thermomechanical behaviour. Int. Mater. Rev. 42(3), 85 (1997).

    Article  CAS  Google Scholar 

  11. K.A. Nibur and D.F. Bahr: Indentation techniques for the study of deformation across grain boundaries, in Mechanical Properties Derived from Nanostructuring Materials, edited by D.F. Bahr, H. Kung, N.R. Moody, and K.J. Wahl (Mater. Res. Soc. Symp. Proc. 778, Warrendale, PA, 2003), p. 129.

    CAS  Google Scholar 

  12. W.A. Soer and J.Th.M. De Hosson: Detection of grain-boundary resistance to slip transfer using nanoindentation. Mater. Lett. 59(24–25), 3192 (2005).

    Article  CAS  Google Scholar 

  13. P.C. Wo and A.H.W. Ngan: Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni3Al using nanoindentation. J. Mater. Res. 19(1), 189 (2004).

    Article  CAS  Google Scholar 

  14. K.L. Johnson: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  15. B. Taljat, T. Zacharia, and G.M. Pharr: Pile-up behavior of spherical indentations in engineering materials, in Fundamentals of Nanoindentation and Nanotribology, edited by N.R. Moody, W.W. Gerberich, N. Burnham, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 33.

    CAS  Google Scholar 

  16. I.N. Sneddon: Relation between load and penetration in axisymmetric Boussinesq problem for punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  17. E.L. Jablonski, R.E. Gorga, and B. Narasimhan: Interdiffusion and phase behavior at homopolymer/random copolymer interfaces. Polymer (Guildf.) 44, 729 (2003).

    Article  CAS  Google Scholar 

  18. R.E. Gorga and B. Narasimhan: Relating fracture energy to entanglements at partially miscible polymer interfaces. J. Polym. Sci., Polym. Phys. Ed. 40, 2292 (2002).

    Article  CAS  Google Scholar 

  19. R.E. Gorga and B. Narasimhan: Fracture toughness of partially miscible polymer interfaces. Polym. Eng. Sci. 44, 929 (2004).

    Article  CAS  Google Scholar 

  20. D. Montezinos, B.G. Wells, and J.L. Burns: The use of ruthenium in hypochlorite as a stain for polymeric materials. J. Polym. Sci.: Polym. Lett. Ed. 23, 421 (1985).

    CAS  Google Scholar 

  21. C-T. Lo, F.C. Laabs, and B. Narasimhan: Interfacial adhesion between incompatible semicrystalline polymer systems. J. Polym. Sci. [B] 42, 2667 (2004).

    Article  CAS  Google Scholar 

  22. J. Brandrup, E.H. Immergut, and E.A. Grulke, Eds.: Polymer Handbook, 4th ed. (Wiley, New York, NY, 1999).

    Google Scholar 

  23. ABAQUS: General Purpose Finite Element Program, Version 6.3 (Hibbit, Karlsson and Sorensen Inc., Pawtucket, RI, 2002).

    Google Scholar 

  24. A. Bolshakov and G.M. Pharr: Influences of pile-up on the measurement of mechanical properties by load and depth-sensing indentation techniques., J. Mater. Res. 13(4), 1049 (1998).

    Article  CAS  Google Scholar 

  25. D. Tabor: Hardness of Metals (Oxford University Press, Oxford, 1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf F. Bastawros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Lo, CT., Bastawros, A.F. et al. Measurements of diffusion thickness at polymer interfaces by nanoindentation: A numerically calibrated experimental approach. Journal of Materials Research 24, 985–992 (2009). https://doi.org/10.1557/jmr.2009.0105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0105

Navigation