Skip to main content
Log in

Can indentation technique measure unique elastoplastic properties?

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Indentation is widely used to extract material elastoplastic properties from measured force-displacement curves. Many previous studies argued or implied that such a measurement is unique and the whole material stress-strain curve can be measured. Here we show that first, for a given indenter geometry, the indentation test cannot effectively probe material plastic behavior beyond a critical strain, and thus the solution of the reverse analysis of the indentation force-displacement curve is nonunique beyond such a critical strain. Secondly, even within the critical strain, pairs of mystical materials can exist that have essentially identical indentation responses (with differences below the resolution of published indentation techniques) even when the indenter angle is varied over a large range. Thus, fundamental elastoplastic behaviors, such as the yield stress and work hardening properties (functions), cannot be uniquely determined from the forcedisplacement curves of indentation analyses (including both plural sharp indentation and deep spherical indentation). Explicit algorithms of deriving the mystical materials are established, and we qualitatively correlate the sharp and spherical indentation analyses through the use of critical strain. The theoretical study in this paper addresses important questions of the application range, limitations, and uniqueness of the indentation test, as well as providing useful guidelines to properly use the indentation technique to measure material constitutive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004).

    Article  Google Scholar 

  2. A. Gouldstone, N. Chollacoop, M. Dao, J. Li, A.M. Minor, and Y-L. Shen: Indentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Mater. 55, 4015 (2007).

    Article  CAS  Google Scholar 

  3. G. Cao and X. Chen: Mechanisms of nanoindentation on single-walled carbon nanotubes: The effect of nanotube length., J. Mater. Res. 21, 1048 (2006).

    Article  CAS  Google Scholar 

  4. X. Chen, Y. Xiang, and J.J. Vlassak: A novel technique to measure mechanical properties of porous materials by nanoindentation. J. Mater. Res. 21, 715 (2006).

    Article  CAS  Google Scholar 

  5. V. Gordon, X. Chen, J.W. Hutchinson, A.R. Bausch, M. Marquez, and D.A. Weitz: Self-assembled inflated polymer membrane capsules by osmotic pressure. J. Am. Chem. Soc. 126, 14117 (2004).

    Article  CAS  Google Scholar 

  6. M. Zhao, X. Chen, Y. Xiang, J.J. Vlassak, D. Lee, N. Ogasawara, N. Chiba, and Y.X. Gan: Measuring elastoplastic properties of thin films on an elastic substrate using sharp indentation. Acta Mater. 55, 6260 (2007).

    Article  CAS  Google Scholar 

  7. X. Chen, J.W. Hutchinson, and A.G. Evans: Simulation of the high temperature impression of thermal-barrier coatings with columnar microstructure. Acta Mater. 52, 565 (2004).

    Article  CAS  Google Scholar 

  8. X. Chen, J. Yan, and A.M. Karlsson: On the determination of residual stress and mechanical properties by indentation. Mater. Sci. Eng., A 416, 139 (2006).

    Article  CAS  Google Scholar 

  9. Y.T. Cheng and C.M. Cheng: Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84, 1284 (1998).

    Article  CAS  Google Scholar 

  10. M. Li, W.M. Chen, N.G. Liang, and L.D. Wang: A numerical study of indentation using indenters of different geometry. J. Mater. Res. 18, 73 (2004).

    Article  CAS  Google Scholar 

  11. J.L. Bucaille, S. Stauss, E. Felder, and J. Michler: Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater. 51, 1663 (2003).

    Article  CAS  Google Scholar 

  12. N. Chollacoop, M. Dao, and S. Suresh: Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater. 51, 3713 (2003).

    Article  CAS  Google Scholar 

  13. M. Futakawa, T. Wakui, Y. Tanabe, and I. Ioka: Identification of the constitutive equation by the indentation technique using plural indenters with different apex angles. J. Mater. Res. 16, 2283 (2001).

    Article  CAS  Google Scholar 

  14. N. Ogasawara, N. Chiba, and X. Chen: Representative strain of indentation analysis. J. Mater. Res. 20, 2225 (2005).

    Article  CAS  Google Scholar 

  15. A. DiCarlo, H.T.Y. Yang, and S. Chandrasekar: Semi-inverse method for predicting stress-strain relationship from cone indentations. J. Mater. Res. 18, 2068 (2003).

    Article  CAS  Google Scholar 

  16. Y.P. Cao and J. Lu: Depth-sensing instrumented indentation with dual sharp indenters: Stability analysis and corresponding regularization schemes. Acta Mater. 52, 1143 (2004).

    Article  CAS  Google Scholar 

  17. J-H. Ahn and D. Kwon: Derivation of plastic stress—strain relationship from ball indentations: Examination of strain definition and pileup effect. J. Mater. Res. 16, 3170 (2001).

    Article  CAS  Google Scholar 

  18. J.G. Swadener, B. Taljat, and G.M. Pharr: Measurement of residual stress by load and depth-sensing indentation with spherical indenters. J. Mater. Res. 16, 2091 (2001).

    Article  CAS  Google Scholar 

  19. B. Taljat, T. Zacharia, and F. Kosel: New analytical procedure to determine stress-strain curve from spherical indentation data. Int. J. Solids Struct. 35, 4411 (1998).

    Article  Google Scholar 

  20. H. Lee, J.H. Lee, and G.M. Pharr: A numerical approach to spherical indentation techniques for material property evaluation. J. Mech. Phys. Solids 53, 2037 (2005).

    Article  CAS  Google Scholar 

  21. Y.P. Cao and J. Lu: A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 4023 (2004).

    Article  CAS  Google Scholar 

  22. M. Zhao, N. Ogasawara, N. Chiba, and X. Chen: A new approach to measure the elastic-plastic properties of bulk materials using spherical indentation. Acta Mater. 54, 23 (2006).

    Article  CAS  Google Scholar 

  23. X.L. Gao, X.N. Jing, and G. Subhash: Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. Int. J. Solids Struct. 43, 2193 (2006).

    Article  Google Scholar 

  24. X. Chen, J.W. Hutchinson, and A.G. Evans: The mechanics of indentation induced lateral cracking., J. Am. Ceram. Soc. 88, 1233 (2005).

    Article  CAS  Google Scholar 

  25. J. Alkorta, J.M. Martinez-Esnaola, and J.G. Sevillano: Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load-penetration data., J. Mater. Res. 20, 432 (2005).

    Article  CAS  Google Scholar 

  26. K.K. Tho, S. Swaddiwudhipong, Z.S. Liu, K. Zeng, and J. Hua: Uniqueness of reverse analysis from conical indentation tests. J. Mater. Res. 19, 2498 (2004).

    Article  CAS  Google Scholar 

  27. N. Ogasawara, M. Zhao, N. Chiba, and X. Chen: Comments on “Extracting the plastic properties of metal materials from micro-indentation tests: Experimental comparison of recently published methods” by B. Guelorget, et al. [J. Mater. Soc. 22, 1512 (2007)]: The correct methods of analyzing experimental data and reverse analysis of indentation tests. J. Mater. Res. 23, 598 (2008).

    Article  CAS  Google Scholar 

  28. X. Qian, Y.P. Cao, and J. Lu: Dependence of the representative strain on the hardening functions of metallic materials in indentation. Scr. Mater. 57, 57 (2007).

    Article  CAS  Google Scholar 

  29. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments., J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  30. J.C. Hay, A. Bolshakov, and G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data., J. Mater. Res. 14, 2296 (1999).

    Article  CAS  Google Scholar 

  31. R.B. King: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).

    Article  Google Scholar 

  32. S.D. Mesarovic and N.A. Fleck: Spherical indentation of elastic-plastic solids. Proc. R. Soc. London, Ser. A 455, 2707 (1999).

    Article  Google Scholar 

  33. N. Ogasawara, N. Chiba, and X. Chen: Limit analysis-based approach to determine the material plastic properties with conical indentation. J. Mater. Res. 21, 947 (2006).

    Article  CAS  Google Scholar 

  34. S. Swaddiwudhiponga, K.K. Tho, Z.S. Liu, and K. Zeng: Material characterization based on dual indenters. Int. J. Solids Struct. 42, 69 (2005).

    Article  Google Scholar 

  35. Y.P. Cao and N. Huber: Further investigation on the definition of the representative strain in conical indentation. J. Mater. Res. 21, 1810 (2006).

    Article  CAS  Google Scholar 

  36. N. Huber and C. Tsakmakis: Determination of constitutive properties from spherical indentation data using neural networks. Part I: The case of pure kinematic hardening in plasticity laws. J. Mech. Phys. Solids 47, 1569 (1999).

    Article  Google Scholar 

  37. L. Wang and S.I. Rokhlin: Universal scaling functions for continuous stiffness nanoindentation with sharp indenters. Int. J. Solids Struct. 42, 3807 (2005).

    Article  Google Scholar 

  38. L. Wang, M. Ganor, and S.I. Rokhlin: Inverse scaling function in nanoindentation with sharp indenters: Determination of material properties. J. Mater. Res. 20, 987 (2005).

    Article  CAS  Google Scholar 

  39. E. Tyulyukovskiy and N. Huber: Neural networks for tip correction of spherical indentation curves from bulk metals and thin metal films. J. Mech. Phys. Solids 55, 391 (2007).

    Article  CAS  Google Scholar 

  40. N. Ogasawara, N. Chiba, and X. Chen: Measuring the plastic properties of bulk materials by one microindentation test. Scr. Mater. 54, 65 (2006).

    Article  CAS  Google Scholar 

  41. O. Casals and J. Alcala: Analytical and experimental resolutions in the duality of mechanical property extractions from instrumented indentation experiments: Comments on “On determination of material parameters from loading and unloading responses in nanoindentation with a single sharp indenter” by L. Wang and S.I. Rokhlin. J. Mater. Res. 22, 1138 (2007) [J. Mater. Res. 21, 995 (2006)].

    Article  CAS  Google Scholar 

  42. O. Casals and J. Alcala: The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments. Acta Mater. 53, 3545 (2005).

    Article  CAS  Google Scholar 

  43. J. Luo and J. Lin: A study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters. Int. J. Solids Struct. 44, 5803 (2007).

    Article  CAS  Google Scholar 

  44. M-Q. Le: A computational study on the instrumented sharp indentations with dual indenters. Int. J. Solids Struct. 45, 2818 (2008).

    Article  Google Scholar 

  45. H. Lan and T.A. Venkatesh: Determination of the elastic and plastic properties of materials through instrumented indentation with reduced sensitivity. Acta Mater. 55, 2025 (2007).

    Article  CAS  Google Scholar 

  46. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, and J.L. Hay: On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398, 331 (2001).

    Article  Google Scholar 

  47. T.T. Zhu, A.J. Bushby, and D.J. Dunstan: Size effect in the initiation of plasticity for ceramics in nanoindentation. J. Mech. Phys. Solids 56, 1170 (2008).

    Article  CAS  Google Scholar 

  48. Y.T. Cheng and C.M. Cheng: Can stress-strain relationships be obtained from indentation curves using conical and pyramidal indenters?, J. Mater. Res. 14, 3493 (1999).

    Article  CAS  Google Scholar 

  49. H. Pelletier, J. Krier, A. Cornet, and P. Mille: Limits of using bilinear stress-strain curve for finite element modeling of nanoindentation response on bulk materials. Thin Solid Films 379, 147 (2000).

    Article  CAS  Google Scholar 

  50. H. Pelletier: Predictive model to estimate the stress-strain curves of bulk metals using nanoindentation. Tribol. Int. 39, 593 (2006).

    Article  CAS  Google Scholar 

  51. A. Hasanov: An inversion method for identification of elastoplastic properties for engineering materials from limited spherical indentation measurements. Inverse Prob. 15, 601 (2007).

    Article  Google Scholar 

  52. T.W. Capehart and Y-T. Cheng: Determining constitutive models from conical indentation: Sensitivity analysis. J. Mater. Res. 18, 827 (2003).

    Article  CAS  Google Scholar 

  53. X. Chen, N. Ogasawara, M. Zhao, and N. Chiba: On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials. J. Mech. Phys. Solids 55, 1618 (2007).

    Article  Google Scholar 

  54. F.P. Bowden and D. Tabor: The Friction and Lubrication of Solids (Oxford University Press, Oxford, 1950).

    Google Scholar 

  55. B. Guelorget, M. Francois, C. Liu, and J. Lu: Extracting the plastic properties of metal materials from microindentation tests: Experimental comparison of recently published methods. J. Mater. Res. 22, 1512 (2007).

    Article  CAS  Google Scholar 

  56. Y.P. Cao, X. Qian, and N. Huber: Spherical indentation into elastoplastic materials: Indentation-response based definitions of the representative strain. Mater. Sci. Eng., A 454–455, 1 (2007).

    Article  CAS  Google Scholar 

  57. N. Ogasawara, N. Chiba, M. Zhao, and X. Chen: Comments on “Further investigation on the definition of the representative strain in conical indentation” by Y. Cao and N. Huber. [J. Mater. Res. 21, 1810 (2006)]. J. Mater. Res. 22, 858 (2007).

    Article  Google Scholar 

  58. N. Ogasawara, N. Chiba, M. Zhao, and X. Chen: Determine material plastic properties with conical indentation: An optimized framework of the representative strain. J. Solid Mech. Mater. Eng. 1, 895 (2007).

    Article  Google Scholar 

  59. X. Qian, Y. Cao, J. Zhang, D. Raabe, Z. Yao, and B. Fei: An inverse approach to determine the mechanical properties of elastoplastic materials using indentation tests. Computers Materials & Continua 7, 33 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Ogasawara, N., Chiba, N. et al. Can indentation technique measure unique elastoplastic properties?. Journal of Materials Research 24, 784–800 (2009). https://doi.org/10.1557/jmr.2009.0100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0100

Navigation