Skip to main content
Log in

The equivalence of axisymmetric indentation model for three-dimensional indentation hardness

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nix and Gao [J. Mech. Phys. Solids 46, 411 (1998)] established an important relation between the microindentation hardness and indentation depth for axisymmetric indenters. We use the conventional theory of mechanism-based strain gradient plasticity [Huang et al., Int. J. Plast. 20, 753 (2004)] established from the Taylor dislocation model [Taylor, Proc. R. Soc. London A 145, 362 (1934); Taylor, J. Inst. Met. 62, 307 (1938)] to study the Berkovich and other triangular pyramid indenters. The three-dimensional finite element analysis shows that the widely used equivalence of equal base area leads to significant errors, particularly in microindentation. A new equivalence of equal angle is proposed for triangular pyramid indenters, and it has been validated for a large range of indenter angles and indentation depths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Guzman, G. Neubauer, P. Flinn, and W.D. Nix: The role of indentation depth on the measured hardness of materials, in Thin Films: Stresses and Mechanical Properties IV, edited by P.H. Townsend, T.P. Weihs, J.E. Sanchez Jr., and P. Borgesen (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 613.

    Google Scholar 

  2. N.A. Stelmashenko, A.G. Walls, L.M. Brown, and Y.V. Milman: Microindentation on W and Mo oriented single crystals: An STM study. Acta Metall. Mater. 41, 2855 (1993).

    Article  CAS  Google Scholar 

  3. Q. Ma and D.R. Clarke: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853 (1995).

    Article  CAS  Google Scholar 

  4. W.J. Poole, M.F. Ashby, and N.A. Fleck: Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 34, 559 (1996).

    Article  CAS  Google Scholar 

  5. K.W. McElhaney, J.J. Vlasssak, and W.D. Nix: Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13, 1300 (1998).

    Article  CAS  Google Scholar 

  6. Y. Huang, S. Qu, K.C. Hwang, M. Li, and H. Gao: A conventional theory of mechanism based strain gradient plasticity. Int. J. Plast. 20, 753 (2004).

    Article  Google Scholar 

  7. N.A. Fleck and J.W. Hutchinson: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825 (1993).

    Article  Google Scholar 

  8. N.A. Fleck and J.W. Hutchinson: Strain gradient plasticity, in Advances in Applied Mechanics, Vol. 33, edited by J.W. Hutchinson and T.Y. Wu (Academic Press, New York, 1997), p. 295.

    Article  Google Scholar 

  9. A. Acharya and J.L. Bassani: Lattice incompatibility and a gradient theory of crystal plasticity. J. Mech. Phys. Solids 48, 1565 (2000).

    Article  Google Scholar 

  10. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1239 (1999).

    Article  Google Scholar 

  11. Y. Huang, H. Gao, W.D. Nix, and J.W. Hutchinson: Mechanism-based strain gradient plasticity—II. Analysis. J. Mech. Phys. Solids 48, 99 (2000).

    Article  Google Scholar 

  12. M.R. Begley and J.W. Hutchinson: The mechanics of size-dependent indentation. J. Mech. Phys. Solids 46, 2049 (1998).

    Article  CAS  Google Scholar 

  13. Y. Huang, Z. Xue, H. Gao, W.D. Nix, and Z.C. Xia: A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J. Mater. Res. 15, 1786 (2000).

    Article  CAS  Google Scholar 

  14. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004).

    Article  Google Scholar 

  15. A.A. Elmustafa and D.S. Stone: Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 51, 357 (2003).

    Article  CAS  Google Scholar 

  16. Z. Zong, J. Lou, O.O. Adewoye, A.A. Elmustafa, F. Hammad, and W.O. Soboyejo: Indentation size effects in the nano- and micro-hardness of fcc single crystal metals. Mater. Sci. Eng., A 434, 178 (2006).

    Article  Google Scholar 

  17. R. Saha, Z. Xue, Y. Huang, and W.D. Nix: Indentation of a soft metal film on a hard substrate: Strain gradient hardening effects. J. Mech. Phys. Solids 49, 1997 (2001).

    Article  CAS  Google Scholar 

  18. F. Zhang, R. Saha, Y. Huang, W.D. Nix, K.C. Hwang, S. Qu, and M. Li: Indentation of a hard film on a soft substrate: Strain gradient hardening effects. Int. J. Plast. 23, 25 (2007).

    Article  CAS  Google Scholar 

  19. K. Durst, K.M. Goken, and G.M. Pharr: Indentation size effect in spherical and pyramidal indentations. J. Phys. D: Appl. Phys. 41, 1 (2008).

    Article  Google Scholar 

  20. R.K. AbuAl-Rub: Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mech. Mater. 39, 787 (2007).

    Article  Google Scholar 

  21. Z. Xue, Y. Huang, K.C. Hwang, and M. Li: The influence of indenter tip radius on the micro-indentation hardness. J. Eng. Mater. Tech. Trans. ASME 124, 371 (2002).

    Article  Google Scholar 

  22. S. Qu, Y. Huang, W.D. Nix, H. Jiang, F. Zhang, and K.C. Hwang: Indenter tip radius effect on the Nix-Gao relation in micro- and nanoindentation hardness experiments. J. Mater. Res. 19, 3423 (2004).

    Article  CAS  Google Scholar 

  23. S. Qu, Y. Huang, G.M. Pharr, and K.C. Hwang: The indentation size effect in the spherical indentation of iridium: A study via the conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 22, 1265 (2006).

    Article  CAS  Google Scholar 

  24. J. Qin, Y. Huang, K.C. Hwang, J. Song, and G.M. Pharr: The effect of indenter angle on the microindentation hardness. Acta Mater. 55, 6127 (2007).

    Article  CAS  Google Scholar 

  25. G.I. Taylor: The mechanism of plastic deformation of crystals. Part I.-Theoretical. Proc. R. Soc. London A 145, 362 (1934).

    Article  CAS  Google Scholar 

  26. G.I. Taylor: Plastic strain in metal. J. Inst. Met. 62, 307 (1938).

    Google Scholar 

  27. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  28. J.G. Swadener, E.P. George, and G.M. Pharr: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681 (2002).

    Article  Google Scholar 

  29. Y. Huang, F. Zhang, K.C. Hwang, W.D. Nix, G.M. Pharr, and G Feng: A model of size effects in nano-indentation. J. Mech. Phys. Solids 54, 1668 (2006).

    Article  Google Scholar 

  30. Y. Huang, X. Feng, G.M. Pharr, and K.C. Hwang: A nano-indentation model for spherical indenters. Model. Simul. Mater. Sci. Eng. 15, S255 (2007).

    Article  Google Scholar 

  31. F. Zhang, Y. Huang, K.C. Hwang, S. Qu, and C. Liu: A three-dimensional strain gradient plasticity analysis of particle size effect in composite materials. Mater. Manuf. Process. 22, 140 (2007).

    Article  CAS  Google Scholar 

  32. M. Li, W.M. Chen, N.G. Liang, and L.D. Wang: A numerical study of indentation using indenters of different geometry. J. Mater. Res. 19, 73 (2004).

    Article  Google Scholar 

  33. M.F. Ashby: The deformation of plastically non-homogeneous alloys. Philos. Mag. 21, 399 (1970).

    Article  CAS  Google Scholar 

  34. J.F. Nye: Some geometrical relations in dislocated crystal. Acta Metall. Mater. 1, 153 (1953).

    Article  CAS  Google Scholar 

  35. A.H. Cottrell: The Mechanical Properties of Materials (J. Wiley, New York, 1964), p. 277.

    Google Scholar 

  36. A. Arsenlis and D.M. Parks: Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 47, 1597 (1999).

    Article  CAS  Google Scholar 

  37. M. Shi, Y. Huang, and H. Gao: The J-integral and geometrically necessary dislocations in nonuniform plastic deformation. Int. J. Plast. 20, 1739 (2004).

    Article  Google Scholar 

  38. J.F.W. Bishop and R. Hill: A theory of plastic distortion of a polycrystalline aggregate under combined stresses. Philos. Mag. 42, 414 (1951).

    Article  CAS  Google Scholar 

  39. J.F.W. Bishop and R. Hill: A theoretical derivation of the plastic properties of a polycrystalline face-centered metal. Philos. Mag. 42, 1298 (1951).

    Article  CAS  Google Scholar 

  40. U.F. Kocks: The relation between polycrystal deformation and single crystal deformation. Metall. Mater. Trans. 1, 1121 (1970).

    Article  Google Scholar 

  41. ABAQUS/Standard User’s Manual Version 6.2 (Hibbitt, Karlsson & Sorenson, Inc., 2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, J., Huang, Y., Xiao, J. et al. The equivalence of axisymmetric indentation model for three-dimensional indentation hardness. Journal of Materials Research 24, 776–783 (2009). https://doi.org/10.1557/jmr.2009.0095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0095

Navigation