Skip to main content
Log in

Greatly enhanced broadband near-infrared emission due to energy transfer from Cr3+ to Ni2+ in transparent magnesium aluminosilicate glass ceramics

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cr3+/Ni2+ co-doped optically transparent magnesium aluminosilicate glass-ceramics containing MgAl2O4 nanocrystals have been prepared by heat-treatment. Greatly enhanced broadband near-infrared emission centered at 1216 nm in Cr3+/Ni2+ co-doped glass ceramics is observed when compared with the Ni2+ single-doped glass ceramics under 532 nm excitation. The observed enhancement of infrared emission is attributed to the energy transfer from Cr3+ to Ni2+ ions in the nanocrystalline phase, which leads to the emission due to 3T2(3F) → 3A2(3F) transition of octahedral Ni2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. B.N. Samson, L.R. Pinckney, J. Wang, G.H. Beall, N.F. Borrelli: Nickel-doped nanocrystalline glass-ceramic fiber. Opt. Lett. 27, 1309 (2002)

    Article  CAS  Google Scholar 

  2. M.V. Iverson, J.C. Windscheif, W.A. Andrauskas: Optical parameters for the MgO:Ni2+ laser system. Appl. Phys. Lett. 36, 183 (1980)

    Article  CAS  Google Scholar 

  3. T. Suzuki, G.S. Murugan, Y. Ohishi: Optical properties of transparent Li2O–Ga2O3–SiO2 glass-ceramics embedding Ni-doped nanocrystals. Appl. Phys. Lett. 86, 131903 (2005)

    Article  Google Scholar 

  4. T. Suzuki, K. Horihuchi, Y. Ohishi: Structural and optical properties of ZnO–Al2O3–SiO2 system glass-ceramics containing Ni2+-doped nanocrystals. J. Non-Cryst. 57, 3613 (2005)

    Google Scholar 

  5. S. Zhou, G. Feng, B. Wu, N. Jiang, S. Xu, J. Qiu: Intense infrared luminescence in transparent glass-ceramics containing β–Ga2O3:Ni2+ nanocrystals. J. Phys. Chem. C 111, 7335 (2007)

    Article  CAS  Google Scholar 

  6. A. Jouini, A. Yoshikawa, Y. Guyot, A. Brenier, T. Fukuda, G. Boulon: Potential candidate for new tunable solid-state laser between 1 and 2 μm: Ni2+-doped MgAl2O4 spinel grown by the micro-pulling-down method. Opt. Mater. 30, 47 (2007)

    Article  CAS  Google Scholar 

  7. I. Yamaguchi, K. Tanaka, K. Hirao, N. Soga: Preparation and optical properties of transparent glass-ceramics containing LiGa5O8:Cr3+. J. Mater. Sci. 31, 3541 (1996)

    Article  CAS  Google Scholar 

  8. I. Broussell, E. Fortin, L. Kulyuk, S. Popov, A. Anedda, R. Corpino: Optical properties of α–ZnAl2S4:Cr single crystals. J. Appl. Phys. 84, 533 (1998)

    Article  CAS  Google Scholar 

  9. M.A. Bunuel, R. Alcala, R. Cases: Spectroscopy study of Cr3+ ions in fluorochloro- and fluorobromzirconate glasses. J. Chem. Phys. 109, 2294 (1998)

    Article  CAS  Google Scholar 

  10. F. Rossi, G. Pucker, M. Montagna, M. Ferrari, A. Boukenter: Fluorescence line narrowing study of Cr3+ ions in cordierite glass nucleating MgAl2O4 nanocrystals. Opt. Mater. 13, 373 (2000)

    Article  CAS  Google Scholar 

  11. K.E. Lipinska-Kalita, P.E. Kalita, D.M. Krol, R.J. Hemley, C.L. Cobin, Y. Ohki: Spectroscopic properties of Cr3+ ions in nanocrystalline glass-ceramics composites. J. Non-Cryst. Solids 352, 524 (2006)

    Article  CAS  Google Scholar 

  12. E. Nogales, J.A. Cercia, B. Mendez, J. Piqueras: Red luminescence of Cr in β–Ga2O3 nanowires. J. Appl. Phys. 101, 033517 (2007)

    Article  Google Scholar 

  13. M.J. Elejalde, R. Balda, J. Fernandez, E. Macho: Optical properties of Cr3+ and Nd3+ in singly- and doubly-doped barium-indium-gallium-based fluoride glass investigated by time-resolved laser spectroscopy. Phys. Rev. B 46, 5169 (1992)

    Article  CAS  Google Scholar 

  14. P. Hong, X.X. Zhang, C.W. Struck, B. Di Bartolo: Luminescence of Cr3+ and energy transfer between Cr3+ and Nd3+ ions in yttrium aluminum garnet. J. Appl. Phys. 78, 4659 (1995)

    Article  CAS  Google Scholar 

  15. Y. Shen, T. Riedener, K.L. Bray: Effect of pressure and temperature on energy transfer between Cr3+ and Tm3+ in Y3Al5O12. Phys. Rev. B 61, 11460 (2000)

    Article  CAS  Google Scholar 

  16. D. Imbert, M. Cantuel, J.C.G. Bunzli, G. Bernardinelli, C. Piguet: Extending lifetimes of lanthanide-based near-infrared emitters (Nd, Yb) in the millisecond range through Cr(III) sensitization in discrete bimetallic edifices. J. Am. Chem. Soc. 125, 15698 (2003)

    Article  CAS  Google Scholar 

  17. E. Bovero, E. Cavalli, D. Jaque, J.G. Sole, A. Speghini, M. Bettinelli: Cr3+ → Nd3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal. J. Appl. Phys. 98, 023103 (2005)

    Article  Google Scholar 

  18. R. Zhong, J. Zhang, X. Zhang, S. Lu, X. Wang: Red phosphorescence in Sr4Al14O25:Cr3+, Eu2+, Dy3+ through persistent energy transfer. Appl. Phys. Lett. 88, 201916 (2006)

    Article  Google Scholar 

  19. Z. Nie, J. Zhang, X. Zhang, X. Ren: Evidence for visible quantum cutting via energy transfer in SrAl12O19:Pr. Cr. Opt. Lett. 32, 991 (2007)

    Article  CAS  Google Scholar 

  20. B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, J. Qiu: Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals. Opt. Express 16, 2508 (2008)

    Article  CAS  Google Scholar 

  21. A.G. Gregory, T.J. Veasey: The crystallization of cordierite glass. J. Mater. Sci. 8, 324 (1973)

    Article  Google Scholar 

  22. H. Shao, K.M. Liang, F. Zhou, G.L. Wang, A.M. Hu: Microstructure and mechanical properties of MgO–Al2O3–SiO2–TiO2 glass-ceramics. Mater. Res. Bull. 40, 499 (2005)

    Article  CAS  Google Scholar 

  23. R. Reisfeld, A. Kisilev, E. Greenberg, A. Buch, M. Ish-shalom: Spectroscopy of Cr3+ in transparent glass ceramics containing spinel and gahnite. Chem. Phys. Lett. 104, 153 (1984)

    Article  CAS  Google Scholar 

  24. H. Wang, X.Y. Kuang, A.J. Mao, X. Yang: Effect on the EPR and site symmetry of Cr3+ ions doping spinel crystals: A complete energy matrices study. Chem. Phys. Lett. 436, 194 (2007)

    Article  CAS  Google Scholar 

  25. Y.K. Kim, H.M. Jang: Lattice contraction and cation ordering of ZrTiO4 in the normal-to-incommensurate phase transition. J. Appl. Phys. 89, 6349 (2001)

    Article  CAS  Google Scholar 

  26. R.E. Newnham: Crystal structure of ZiTiO4. J. Am. Ceram. Soc. 50, 216 (1967)

    Article  CAS  Google Scholar 

  27. N.W. Grimes: The spinels: Versatile materials. Phys. Technol. 6, 22 (1975)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science foundation of China (Grant No. 50872123), the National Basic Research Program of China (2006CB806000b), and Program for Changjiang Scholars and Innovative Research Team in University (IRT0651).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianrong Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J., Zhou, S., Wu, B. et al. Greatly enhanced broadband near-infrared emission due to energy transfer from Cr3+ to Ni2+ in transparent magnesium aluminosilicate glass ceramics. Journal of Materials Research 24, 310–315 (2009). https://doi.org/10.1557/JMR.2009.0068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2009.0068

Navigation