Skip to main content
Log in

Phase stability of heteroepitaxial polydomain BaTiO3 thin films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The phase stability of ferroelectric, epitaxial, polydomain BaTiO3 thin films was examined using temperature-dependent x-ray diffraction (XRD) and in-plane electronic polarization measurements. The epitaxial BaTiO3 thin films were grown on MgO(100) substrates by a metal-organic chemical vapor deposition process. As-deposited and annealed BaTiO3 thin films with different domain structures were examined. Temperature-dependent plane-normal XRD analysis reveals well-defined phase transitions at 140 and 169 °C in the c- and a-oriented films, respectively. The measured Curie temperatures are consistent with those predicted by Landau-Ginsburg-Devonshire theory as applied to polydomain BaTiO3 thin films. Temperature-dependent in-plane electronic polarization measurements confirm that the 140 °C Curie temperature observed in the c-oriented film is a well-defined second-order paraelectric-ferroelectric transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Tang, A.L. Meier, D.J. Towner, and B.W. Wessels: BaTiO3 thin-film waveguide modulator with a low voltage-length product at near-infrared wavelengths of 0.98 and 1.55 μm. Opt. Lett. 30, 254 (2005).

    Article  Google Scholar 

  2. P.S. Tang, D.J. Towner, T. Hamano, A.L. Meier, and B.W. Wessels: Electro-optic modulation up to 40 GHz in a barium titanate thin film waveguide modulator. Opt. Express. 12, 5962 (2004).

    Article  CAS  Google Scholar 

  3. P.S. Tang, D.J. Towner, A.L. Meier, and B.W. Wessels: Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film. Appl. Phys. Lett. 85, 4615 (2004).

    Article  CAS  Google Scholar 

  4. P.S. Tang, D.J. Towner, A.L. Meier, and B.W. Wessels: Low-loss electrooptic BaTiO3 thin film waveguide modulator. IEEE Photonics Technol. Lett. 16, 1837 (2004).

    Article  CAS  Google Scholar 

  5. D.J. Towner: Investigation of torr electric domain structure and nonlinear optical properties in barium titanate epitaxial thin films. Ph.D. Thesis, Northwestern University, Chicago, IL 2005.

    Google Scholar 

  6. H. Terauchi, Y. Watanabe, H. Kasatani, K. Kamigaki, Y. Yano, T. Terashima, and Y. Bando: Structural study of epitaxial BaTiO3 crystals. J. Phys. Soc. Jpn. 61, 2194 (1992).

    Article  CAS  Google Scholar 

  7. K. Iijima, T. Terashima, K. Yamamoto, K. Hirata, and Y. Bando: Preparation of ferroelectric BaTiO3 thin-films by activated reactive evaporation. Appl. Phys. Lett. 56, 527 (1990).

    Article  CAS  Google Scholar 

  8. A. Onodera, Y. Kawamura, T. Okabe, and H. Terauchi: Specific heat in ferroelectric BaTiO3 epitaxial thin films. J. Eur. Ceram. Soc. 19, 1477 (1999).

    Article  CAS  Google Scholar 

  9. Y. Yoneda, T. Okabe, K. Sakaue, H. Terauchi, H. Kasatani, and K. Deguchi: Structural characterization of BaTiO3 thin films grown by molecular beam epitaxy. J. Appl. Phys. 83, 2458 (1998).

    Article  CAS  Google Scholar 

  10. F.M. Bai, H.M. Zheng, H. Cao, L.E. Cross, R. Ramesh, J.F. Li, and D. Viehland: Epitaxially induced high temperature (>900 K) cubic-tetragonal structural phase transition in BaTiO3 thin films. Appl. Phys. Lett. 85, 4109 (2004).

    Article  CAS  Google Scholar 

  11. S.S. Kim and J.H. Je: Real-time synchrotron x-ray scattering study of an epitaxial BaTiO3 thin film during heating. J. Mater. Res. 14, 3734 (1999).

    Article  CAS  Google Scholar 

  12. M.E. Marssi, F.L. Marrec, I.A. Lukyanchuk, and M.G. Karkut: Ferroelectric phase in barium titanate epitaxial thin film. Ferroelectrics 291, 55 (2003).

    Article  Google Scholar 

  13. Y. Yoneda, H. Kasatani, H. Terauchi, Y. Yoshihiko, T. Terashima, and Y. Bando: Ferroelectric phase-transition in BaTiO3 films. J. Cryst. Growth 150, 1090 (1995).

    Article  CAS  Google Scholar 

  14. Y. Yoneda, K. Sakaue, and H. Terauchi: Phase transition of BaTiO3 thin films. J. Phys. Condens. Matter 13, 9575 (2001).

    Article  CAS  Google Scholar 

  15. B.H. Hoerman, G.M. Ford, L.D. Kaufmann, and B.W. Wessels: Dielectric properties of epitaxial BaTiO3 thin films. Appl. Phys. Lett. 73, 2248 (1998).

    Article  CAS  Google Scholar 

  16. S. Chattopadhyay, A.R. Teren, J.H. Hwang, T.O. Mason, and B.W. Wessels: Diffuse phase transition in epitaxial BaTiO3 thin films. J. Mater. Res. 17, 669 (2002).

    Article  CAS  Google Scholar 

  17. K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.Q. Chen, D.G. Schlom, and C.B. Eom: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 (2004).

    Article  CAS  Google Scholar 

  18. M.E. Lines and A.M. Glass: Principles and Applications of Ferroelectric and Related Materials (Oxford University Press, Oxford, 2001), p. 680.

    Book  Google Scholar 

  19. N.A. Pertsev, V.G. Koukhar, R. Waser, and S. Hoffmann: Effects of domain formation on the dielectric properties of ferroelectric thin films. Integr. Ferroelectr. 32, 927 (2001).

    Article  Google Scholar 

  20. S.P. Alpay, I.B. Misirlioglu, A. Sharma, and Z.G. Ban: Structural characteristics of ferroelectric phase transformations in single-domain epitaxial films. J. Appl. Phys. 95, 8118 (2004).

    Article  CAS  Google Scholar 

  21. Y.L. Li, S.Y. Hu, Z.K. Liu, and L.Q. Chen: Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater. 50, 395 (2002).

    Article  CAS  Google Scholar 

  22. R. Pirc and R. Blinc: Off-center Ti model of barium titanate. Phys. Rev. B 70, 134107 (2004).

    Article  Google Scholar 

  23. V.G. Koukhar, N.A. Pertsev, and R. Waser: Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures. Phys. Rev. B 6421, 214103 (2001).

    Article  Google Scholar 

  24. K.M. Rabe and U.V. Waghmare: Strain coupling in perovskite structural transitions: A first principles approach. Ferroelectrics 194, 119 (1997).

    Article  CAS  Google Scholar 

  25. M. Fujimoto: The Physics of Structural Phase Transitions2nd ed. (Springer, New York, 2005), p. 277.

    Google Scholar 

  26. N.A. Pertsev, Z.G. Zembilgotov, and A.K. Tagantsev: Equilibrium states and phase transitions in epitaxial ferroelectric thin films. Ferroelectrics 223, 79 (1999).

    Article  CAS  Google Scholar 

  27. D.J. Towner, J. Ni, T.J. Marks, and B.W. Wessels: Effects of two-stage deposition on the structure and properties of heteroepitaxial BaTiO3 thin films. J. Cryst. Growth 255, 107 (2003).

    Article  CAS  Google Scholar 

  28. J.A. Belot, D.A. Neumayer, C.J. Reedy, D.B. Studebaker, B.J. Hinds, C.L. Stern, and T.J. Marks: Volatility by design. Synthesis and characterization of polyether adducts of bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)barium and their implementation as metal-organic chemical vapor deposition precursors. Chem. Mater. 9, 1638 (1997).

    Article  CAS  Google Scholar 

  29. S. Gevorgian, H. Berg, H. Jacobsson, and T. Lewin: Basic parameters of coplanar-strip waveguides on multilayer dielectric/semiconductor substrates. Part 1: High permittivity substrates. IEEE Microw. Mag. 4, 60 (2003).

    Article  Google Scholar 

  30. B.H. Hoerman: Investigation of the electro-optic and dielectric properties of epitaxial ferroelectric thin films. Ph.D. Thesis, Northwestern University, Chicago, IL, 2001.

    Google Scholar 

  31. Y.L. Li and L.Q. Chen: Temperature-strain phase diagram for BaTiO3 thin films. Appl. Phys. Lett. 88, 072905 (2006).

    Article  Google Scholar 

  32. S.P. Alpay and A.L. Roytburd: Thermodynamics of polydomain heterostructures. III. Domain stability map. J. Appl. Phys. 83, 4714 (1998).

    Article  CAS  Google Scholar 

  33. J.S. Speck and W. Pompe: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin films. 1. Theory. J. Appl. Phys. 76, 466 (1994).

    Article  CAS  Google Scholar 

  34. H.B. Sharma and A. Mansingh: Phase transition in sol-gel-derived barium titanate thin films. J. Phys. D Appl. Phys. 31, 1527 (1998).

    Article  CAS  Google Scholar 

  35. D. Taylor: Thermal expansion data. 8. Complex oxides, ABO3, the perovskites. Trans. J. Br. Ceram. Soc. 84, 181 (1985).

    CAS  Google Scholar 

  36. A. Kelly, G.W. Groves, and P. Kidd: Crystallography and Crystal Defects (Wiley, Chichester, 2000), p. 470.

    Google Scholar 

  37. B. Bridge: Anomalies arising from a comparison of the elastic-constants of the high-temperature superconductor YBa2Cu3O7-X and the related perovskite structure BaTiO3. J. Mater. Sci. Lett. 8, 695 (1989).

    Article  CAS  Google Scholar 

  38. S.Y. Hu, Y.L. Li, and L.Q. Chen: Effect of interfacial dislocations on ferroelectric phase stability and domain morphology in a thin film: A phase-field model. J. Appl. Phys. 94, 2542 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. W. Wessels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, A.L., Desai, A.Y., Wang, L. et al. Phase stability of heteroepitaxial polydomain BaTiO3 thin films. Journal of Materials Research 22, 1384–1389 (2007). https://doi.org/10.1557/jmr.2007.0178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0178

Navigation