Skip to main content
Log in

On the determination of spherical nanoindentation stress–strain curves

  • Outstanding Meeting Paper
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Instrumented nanoindentation experiments, especially with sharp tips, are a well-established technique to measure the hardness and moduli values of a wide range of materials. However, and despite the fact that they can accurately delineate the onset of the elasto-plastic transition of solids, spherical nanoindentation experiments are less common. In this article we propose a technique in which we combine (i) the results of continuous stiffness measurements with spherical indenters–with radii of 1 μm and/or 13.5 μm, (ii) Hertzian theory, and (iii) Berkovich nanoindentations, to convert load/depth of indentation curves to their corresponding indentation stress–strain curves. We applied the technique to fused silica, aluminum, iron and single crystals of sapphire and ZnO. In all cases, the resulting indentation stress–strain curves obtained clearly showed the details of the elastic-to-plastic transition (i.e., the onset of yield, and, as important, the steady state hardness values that were comparable with the Vickers microhardness values obtained on the same surfaces). Furthermore, when both the 1 μm and 13.5 μm indenters were used on the same material, for the most part, the indentation stress–strain curves traced one trajectory. The method is versatile and can be used over a large range of moduli and hardness values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Oliver, G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  2. D. Tabor: Hardness of Metals (Clarendon Press, Oxford, 1951).

    Google Scholar 

  3. X. Li, B. Bhusan: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002).

    Article  CAS  Google Scholar 

  4. J.S. Field, M.V. Swain: The indentation characterisation of the mechanical properties of various carbon materials: Glassy carbon, coke and pyrolytic graphite. Carbon 34, 1357 (1996).

    Article  CAS  Google Scholar 

  5. J.S. Field, M.V. Swain: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  6. J.E. Bradby, J.S. Williams, M.V. Swain: Pop-in events induced by spherical indentation in compound semiconductors. J. Mater. Res. 19, 380 (2004).

    Article  CAS  Google Scholar 

  7. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, J.L. Hay: On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398–399, 331 (2001).

    Article  Google Scholar 

  8. N. Iwashita, M.V. Swain, J.S. Field, N. Ohta, S. Bitoh: Elasto-plastic deformation of glass-like carbons heat-treated at different temperatures. Carbon 39, 1525 (2001).

    Article  CAS  Google Scholar 

  9. N. Iwashita, J.S. Field, M.V. Swain: Indentation hysteresis of glassy carbon materials. Philos. Mag. A 82, 1873 (2002).

    Article  CAS  Google Scholar 

  10. J.S. Field, M.V. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  11. J.E. Bradby, S.O. Kucheyev, J.S. Williams, C. Jagadish, M.V. Swain, P. Munroe, M.R. Phillips: Contact-induced defect propagation in ZnO. Appl. Phys. Lett. 80, 4537 (2002).

    Article  CAS  Google Scholar 

  12. S.O. Kucheyev, J.E. Bradby, J.S. Williams, C. Jagadish, M.V. Swain: Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 80, 956 (2002).

    Article  CAS  Google Scholar 

  13. A. Murugaiah, M.W. Barsoum, S.R. Kalidindi, T. Zhen: Spherical Nanoindentations in Ti3SiC2. J. Mater. Res. 19, 1139 (2004).

    Article  CAS  Google Scholar 

  14. M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, T. Zhen: Kinking nonlinear elastic solids, nanoindentations and geology. Phys. Rev. Lett. 92, 255508-1 (2004).

    Article  CAS  Google Scholar 

  15. M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, Y. Gogotsi: Kink bands, nonlinear elasticity and nanoindentations in graphite. Carbon 42, 1435 (2004).

    Article  CAS  Google Scholar 

  16. I.N. Sneddon: The relaxation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  17. B.N. Lucas, W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 (1999).

    Article  Google Scholar 

  18. S. Basu, M.W. Barsoum, S.R. Kalidindi: Sapphire: A kinking nonlinear elastic solid. J. Appl. Phys. 99, 063501 (2006).

    Article  Google Scholar 

  19. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Aurutin, S.J. Cho, H. Morkoc: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  20. J.B.J Wachtman, W.E. Tefft, D.C.J Lam, R.P. Stenchfield: Elastic constants of synthetic single crystal corundum at room temperature. J. Res. Natl. Bur. Stand. 64A, 213 (1960).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel W. Barsoum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Moseson, A. & Barsoum, M.W. On the determination of spherical nanoindentation stress–strain curves. Journal of Materials Research 21, 2628–2637 (2006). https://doi.org/10.1557/jmr.2006.0324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0324

Navigation