Skip to main content
Log in

Deformation of the cell nucleus under indentation: Mechanics and mechanisms

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Computational models of the cell nucleus, along with experimental observations, can help in understanding the biomechanics of force-induced nuclear deformation and mechanisms of stress transition throughout the nucleus. Here, we develop a computational model for an isolated nucleus undergoing indentation, which includes separate components representing the nucleoplasm and the nuclear envelope. The nuclear envelope itself is composed of three separate layers: two thin elastic layers representing the inner and outer nuclear membranes and one thicker layer representing the nuclear lamina. The proposed model is capable of separating the structural role of major nuclear components in the force-induced biological response of the nucleus (and ultimately the cell). A systematic analysis is carried out to explore the role of major individual nuclear elements, namely inner and outer membranes, nuclear lamina, and nucleoplasm, as well as the loading and experimental factors such as indentation rate and probe angle, on the biomechanical response of an isolated nucleus in atomic force microscopy indentation experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Aebi, J. Cohn, L. Buhle, L. Gerace: The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323, 560 (1986).

    Article  CAS  Google Scholar 

  2. C.J. Hutchison: Lamins: Building blocks or regulators of gene expression? Nat. Rev. Mol. Cell Biol. 3, 848 (2002).

    Article  CAS  Google Scholar 

  3. J.W. Newport, D.J. Forbes: The nucleus: Structure, function, and dynamics. Annu. Rev. Biochem. 56, 535 (1987).

    Article  CAS  Google Scholar 

  4. P.F. Davies: Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75, 519 (1995).

    Article  CAS  Google Scholar 

  5. D.E. Ingber: Tensegrity: The architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575 (1997).

    Article  CAS  Google Scholar 

  6. P.A. Janmey: The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev. 78, 763 (1998).

    Article  CAS  Google Scholar 

  7. G. Dai, N.R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B.R. Blackman, R.D. Kamm, G. Garcia-Cardena, M.A. Gimbrone, Jr.: Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl. Acad. Sci. USA 101, 14871 (2004).

    Article  CAS  Google Scholar 

  8. K.N. Dahl, S.M. Kahn, K.L. Wilson, D.E. Discher: The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117, 4779 (2004).

    Article  CAS  Google Scholar 

  9. J. Lammerding, P.C. Schulze, T. Takahashi, S. Kozlov, T. Sullivan, R.D. Kamm, C.L. Stewart, R.T. Lee: Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370 (2004).

    Article  CAS  Google Scholar 

  10. S. Deguchi, K. Maeda, T. Ohashi, M. Sato: Flow-induced hardening of endothelial nucleus as an intracellular stress-bearing organelle. J. Biomech. 38, 1751 (2005).

    Article  Google Scholar 

  11. A. Vaziri, M.R. Kaazempur-Mofrad: A computational study on the nuclear mechanics and deformation in micropipette aspiration experiment (2006, unpublished).

    Google Scholar 

  12. F. Guilak, J.R. Tedrow, R. Burgkart: Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269, 781 (2000).

    Article  CAS  Google Scholar 

  13. P. Lemoine, J.M. McLaughlin: Nanomechanical measurements on polymers using contact mode atomic force microscopy. Thin Solid Films 339, 258 (1999).

    Article  CAS  Google Scholar 

  14. S.N. Magonov, D.H. Reneker: Characterization of polymer surfaces with atomic force microscopy. Annu. Rev. Mater. Sci. 27, 175 (1997).

    Article  CAS  Google Scholar 

  15. M.R. VanLandingham, R.R. Dagastine, R.F. Eduljee, R.L. McCullough, J.W. Gillespie: Characterization of nanoscale property variations in polymer composite systems: 1. Experimental results. Composites A 30, 75 (1999).

    Article  Google Scholar 

  16. H. Shulha, A. Kovalev, N. Myshkin, V.V. Tsukruk: Some aspects of AFM nanomechanical probing of surface polymer films. Eur. Polym. J. 40, 949 (2004).

    Article  CAS  Google Scholar 

  17. K. Efimenko, M. Rackaitis, W. Manias, A. Vaziri, L. Mahadevan, J. Genzer: Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293 (2005).

    Article  CAS  Google Scholar 

  18. J. Domke, M. Radmacher: Measuring the elastic properties of thin polymeric films with the atomic force microscope. Langmuir 14, 3320 (1998).

    Article  CAS  Google Scholar 

  19. P.M. McGuiggan, D.J. Yarusso: Measurement of the loss tangent of a thin polymeric films using the atomic force microscopy. J. Mater. Res. 19, 387 (2004).

    Article  CAS  Google Scholar 

  20. Y.Y. Lim, M.M. Chaudhri, Y. Enomoto: Accurate determination of the mechanical properties of thin aluminum films deposited on sapphire flats using nanoindentations. J. Mater. Res. 14, 2314 (1999).

    Article  CAS  Google Scholar 

  21. M. Bezanilla, B. Drake, E. Nudler, M. Kashlev, P.K. Hansma, H.G. Hansma: Motion and enzymatic degradation of DNA in the atomic force microscope. Biophys. J. 67, 2454 (1994).

    Article  CAS  Google Scholar 

  22. J.H. Hoh, C.A. Schoenenberger: Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 107, 1105 (1994).

    Google Scholar 

  23. R.E. Mahaffy, C.K. Shih, F.C. MacKintosh, J. Kas: Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85, 880 (2000).

    Article  CAS  Google Scholar 

  24. M. Radmacher, M. Fritz, C.M. Kacher, J.P. Cleveland, P.K. Hansma: Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556 (1996).

    Article  CAS  Google Scholar 

  25. N. Caille, O. Thoumine, Y. Tardy, J.J. Meister: Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35, 177 (2002).

    Article  Google Scholar 

  26. K.N. Dahl, A.J. Engler, J.D. Pajerowski, D.E. Discher: Power-law rheology of isolated nuclei with deformation mapping of nuclear sub-structures. Biophys. J. (2005).

    Google Scholar 

  27. Y. Tseng, J.S. Lee, T.P. Kole, I. Jiang, D. Wirtz: Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J. Cell Sci. 117, 2159 (2004).

    Article  CAS  Google Scholar 

  28. T. Senda, A. Iizuka-Kogo, A. Shimomura: Visualization of the nuclear lamina in mouse anterior pituitary cells and immunocytochemical detection of lamin A/C by quick-freeze freeze-substitution electron microscopy. J. Histochem. Cytochem. 53, 497 (2005).

    Article  CAS  Google Scholar 

  29. G. Schatten, M. Thoman: Nuclear surface complex as observed with the high resolution scanning electron microscope. Visualization of the membrane surfaces of the neclear envelope and the nuclear cortex from Xenopus laevis oocytes. J. Cell Biol. 77, 517 (1978).

    Article  CAS  Google Scholar 

  30. B. Burke, C.L. Stewart: Life at the edge: The nuclear envelope and human disease. Nat. Rev. Mol. Cell Biol. 3, 575 (2002).

    Article  CAS  Google Scholar 

  31. N.M. Maraldi, G. Lattanzi, S. Marmiroli, S. Squarzoni, F.A. Manzoli: New roles for lamins, nuclear envelope proteins and actin in the nucleus. Adv. Enzyme Regul. 44, 155 (2004).

    Article  CAS  Google Scholar 

  32. C. Ostlund, H.J. Worman: Nuclear envelope proteins and neuromuscular diseases. Muscle Nerve 27, 393 (2003).

    Article  CAS  Google Scholar 

  33. H. Karcher, J. Lammerding, H. Huang, R.T. Lee, R.D. Kamm, M.R. Kaazempur-Mofrad: A three-dimensional viscoelastic model for cell deformation with experimental verification. Biophys. J. 85, 3336 (2003).

    Article  CAS  Google Scholar 

  34. N. Mohandas, E. Evans: Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23, 787 (1994).

    Article  CAS  Google Scholar 

  35. O. Thoumine, A. Ott, O. Cardoso, J.J. Meister: Microplates: A new tool for manipulation and mechanical perturbation of individual cells. J. Biochem. Biophys. Methods 39, 47 (1999).

    Article  CAS  Google Scholar 

  36. G.G. Bilodeau: Regular pyramid punch problem. J. Appl. Mech. Trans. ASME 59, 519 (1992).

    Article  Google Scholar 

  37. H. Hertz: On the contact of solid flexible bodies. J. reine angewandte Math. 92, 156 (1881).

    Google Scholar 

  38. D.V. Zhelev, D. Needham, R.M. Hochmuth: Role of the membrane cortex in neutrophil deformation in small pipets. Biophys. J. 67, 696 (1994).

    Article  CAS  Google Scholar 

  39. R.E. Mahaffy, S. Park, E. Gerde, J. Kas, C.K. Shih: Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86, 1777 (2004).

    Article  CAS  Google Scholar 

  40. A. Hategan, R. Law, S. Kahn, D.E. Discher: Adhesively-tensed cell membranes: Lysis kinetics and atomic force microscopy probing. Biophys. J. 85, 2746 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vaziri.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaziri, A., Lee, H. & Kaazempur Mofrad, M.R. Deformation of the cell nucleus under indentation: Mechanics and mechanisms. Journal of Materials Research 21, 2126–2135 (2006). https://doi.org/10.1557/jmr.2006.0262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0262

Navigation