Skip to main content
Log in

The mechanical properties of freestanding electroplated Cu thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The plane-strain bulge test is used to investigate the mechanical behavior of freestanding electroplated Cu thin films as a function of film thickness and microstructure. The stiffness of the films increases slightly with decreasing film thickness because of changes in the crystallographic texture and the elastic anisotropy of Cu. Experimental stiffness values agree well with values derived from single-crystal elastic constants and the appropriate orientation distribution functions. No modulus deficit is observed. The yield stress of the films varies with film thickness and heat treatment as a result of changes in the grain size of the films. The yield stress follows typical Hall-Petch behavior if twins are counted as distinct grains, indicating that twin boundaries are effective barriers to dislocation motion. The Hall-Petch coefficient is in good agreement with values reported for bulk Cu. Film thickness and crystallographic texture have a negligible effect on the yield stress of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Vinci, J.J. Vlassak: Mechanical behavior of thin films. Annu. Rev. Mater. Sci. 26, 431 (1996).

    Article  CAS  Google Scholar 

  2. W.D. Nix: Mechanical properties of thin films. Metall. Trans. A 20, 2217 (1989).

    Article  Google Scholar 

  3. E. Arzt: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 (1998).

    Article  CAS  Google Scholar 

  4. N. Triantafyllidis, E.C. Aifantis: A gradient approach to localization of deformation. 1. Hyperelastic materials. J. Elast. 16, 225 (1986).

    Article  Google Scholar 

  5. E.C. Aifantis: Gradient deformation models at nano, micro, and macro scales. J. Eng. Mater. Technol. 121, 189 (1999).

    Article  Google Scholar 

  6. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson: Strain gradient plasticity: Theory and experiment. Acta Metall. 42, 475 (1994).

    Article  CAS  Google Scholar 

  7. N.A. Fleck, J.W. Hutchinson: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245 (2001).

    Article  Google Scholar 

  8. N.A. Fleck, J.W. Hutchinson: Strain gradient plasticity. Adv. Appl. Mech. 33, 295 (1997).

    Article  Google Scholar 

  9. N.A. Fleck, J.W. Hutchinson: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825 (1993).

    Article  Google Scholar 

  10. L. Nicola, Van der E. Giessen, A. Needleman: Discrete dislocation analysis of size effects in thin films. J. Appl. Phys. 93, 5920 (2003).

    Article  CAS  Google Scholar 

  11. A. Needleman, Van der E. Giessen: Discrete dislocation and continuum descriptions of plastic flow. Mater. Sci. Eng. A 309, 1 (2001).

    Article  Google Scholar 

  12. G.E. Dieter: Mechanical Metallurgy, 3rd ed. (McGraw-Hill, New York, 1986), p. 287.

    Google Scholar 

  13. F. Spaepen, D.Y.W. Yu: A comparison of the strength of multilayers, thin films and nanocrystalline compacts. Scripta Mater. 50, 729 (2004).

    Article  CAS  Google Scholar 

  14. M.A. Haque, M.T.A. Saif: Mechanical behavior of 30-50 mn thick aluminum films under uniaxial tension. Scripta Mater. 47, 863 (2002).

    Article  CAS  Google Scholar 

  15. J. Schiotz, Di F.D. Tolla, K.W. Jacobsen: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).

    Article  Google Scholar 

  16. Z.W. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).

    Article  CAS  Google Scholar 

  17. H.B. Huang, F. Spaepen: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).

    Article  CAS  Google Scholar 

  18. D.Y.W. Yu, F. Spaepen: The yield strength of thin copper films on Kapton. J. Appl. Phys. 95, 2991 (2004).

    Article  CAS  Google Scholar 

  19. A.J. Kalkman, A.H. Verbruggen, G.C.A.M. Janssen: Young’s modulus measurements and grain boundary sliding in freestanding thin metal films. Appl. Phys. Lett. 78, 2673 (2001).

    Article  CAS  Google Scholar 

  20. D.T. Read, Y.W. Cheng, R. Geiss: Morphology, microstructure, and mechanical properties of a copper electrodeposit. Microelectron Eng. 75, 63 (2004).

    Article  CAS  Google Scholar 

  21. D.T. Read, Y.W. Cheng, R.R. Keller, J.D. McColskey: Tensile properties of free-standing aluminum thin films. Scripta Mater. 45, 583 (2001).

    Article  CAS  Google Scholar 

  22. H.D. Espinosa, B.C. Prorok, B. Peng: Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52, 667 (2004).

    Article  CAS  Google Scholar 

  23. M.A. Haque, M.T.A. Saif: Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study. Proc. Natl. Acad. Sci. USA 101, 6335 (2004).

    Article  CAS  Google Scholar 

  24. Y. Xiang, X. Chen, and J.J. Vlassak: The mechanical properties of electroplated Cu thin films measured by means of the bulge test technique, in Thin Films: Stresses and Mechanical Properties IX edited by C.S. Ozkan, L.B. Freund, R.C. Cammarata, and H. Gao (Mater. Res. Soc. Symp. Proc. 695, Warrendale, PA, 2002), p. 189.

    CAS  Google Scholar 

  25. Y. Xiang, J.J. Vlassak, M.T. Perez-Prado, T.Y. Tsui, and A.J. McKerrow: The effects of passivation layer and film thickness on the mechanical behavior of freestanding electroplated Cu thin films with constant microstructure, in Thin Films—Stresses and Mechanical Properties X edited by S.G. Corcoran, Y.C. Joo, N.R. Moody, and Z. Suo (Mater. Res. Soc. Symp. Proc. 795, Warrendale, PA, 2004), p. 417.

  26. H.J. Lee, G. Cornella, J.C. Bravman: Stress relaxation of free-standing aluminum beams for microelectromechanical systems applications. Appl. Phys. Lett. 76, 3415 (2000).

    Article  CAS  Google Scholar 

  27. Y. Xiang, X. Chen, J.J. Vlassak: Plane-strain bulge test for thin films. J. Mater. Res. 20, 2360 (2005).

    Article  CAS  Google Scholar 

  28. Y. Xiang, J.J. Vlassak: Bauschinger effect in thin metal films. Scripta Mater. 53, 177 (2005).

    Article  CAS  Google Scholar 

  29. P.A. Flinn: Measurement and interpretation of stress in copper-films as a function of thermal history. J. Mater. Res. 6, 1498 (1991).

    Article  CAS  Google Scholar 

  30. M.D. Thouless, J. Gupta, J.M.E. Harper: Stress development and relaxation in copper-films during thermal cycling. J. Mater. Res. 8, 1845 (1993).

    Article  CAS  Google Scholar 

  31. R. Keller, S.P. Baker, E. Arzt: Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation. J. Mater. Res. 13, 1307 (1998).

    Article  CAS  Google Scholar 

  32. R. Spolenak, C.A. Volkert, K. Takahashi, S. Fiorillo, J. Miner, and W.L. Brown: Mechanical properties of electroplated copper thin films, in Thin Films—Stresses and Mechanical Properties VIII edited by R. Vinci, O. Kraft, N. Moody, P. Besser, and E. Shaffer, II (Mater. Res. Soc. Symp. Proc. 594, Warrendale, PA, 2000), p. 63.

  33. L.S. Palatnik, A.I. Llinskii: The strength of vacuum condensates of copper. Sov. Phys. Solid State 3, 2053 (1962).

    Google Scholar 

  34. A. Lawley, S. Schuster: Tensile behavior of copper foils prepared from rolled material. Trans. Metall. Soc. AIME 230, 27 (1964).

    CAS  Google Scholar 

  35. I.A. Oding, I.T. Aleksanyan: Mechanical properties of copper films. Sov. Phys. Dokl. 8, 818 (1964).

    Google Scholar 

  36. H. Leidheiser, B.W. Sloope: Mechanical properties of copper films. J. Appl. Phys. 41, 402 (1970).

    Article  CAS  Google Scholar 

  37. R.R. Keller, J.M. Phelps, D.T. Read: Tensile and fracture behavior of free-standing copper films. Mater. Sci. Eng. A 214, 42 (1996).

    Article  Google Scholar 

  38. D.T. Read: Tension-tension fatigue of copper thin films. Int. J. Fatigue 20, 203 (1998).

    Article  CAS  Google Scholar 

  39. M.T. Perez-Prado, J.J. Vlassak: Microstructural evolution in electroplated Cu thin films. Scripta Mater. 47, 817 (2002).

    Article  CAS  Google Scholar 

  40. A. Gangulee: Structure of electroplated and vapor-deposited copper films. J. Appl. Phys. 43, 867 (1972).

    Article  CAS  Google Scholar 

  41. I.V. Tomov, D.S. Stoychev, I.B. Vitanova: Recovery and recrystallization of electrodeposited bright copper coatings at room temperature. 2. X-ray investigation of primary recrystallization. J. Appl. Electrochem. 15, 887 (1985).

    Article  CAS  Google Scholar 

  42. H. Lee, W.D. Nix, S.S. Wong: Studies of the driving force for room temperature microstructure evolution in electroplated copper films. J. Vac. Sci. Technol. B 22, 2369 (2004).

    Article  CAS  Google Scholar 

  43. J.J. Vlassak, W.D. Nix: A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7, 3242 (1992).

    Article  CAS  Google Scholar 

  44. S.H. Hong, K.H. Chung, C.H. Lee: Effects of hot extrusion parameters on the tensile properties and microstructures of SiCw-2124Al composites. Mater. Sci. Eng. A 206, 225 (1996).

    Article  Google Scholar 

  45. H. Gao, L. Zhang, W.D. Nix, C.V. Thompson, E. Arzt: Crack-like grain-boundary diffusion wedges in thin metal films. Acta Mater. 47, 2865 (1999).

    Article  CAS  Google Scholar 

  46. Y.C. Joo, S.J. Hwang, H. Park: The effect of grain boundary characteristics on microstructure and stress void evolution in electroplated and sputtered cu films. Mater. Sci. Forum 426–432, 3481 (2003).

    Article  Google Scholar 

  47. C.R. Barrett, W.D. Nix, A.S. Tetelman: The Principles of Engineering Materials (Prentice-Hall, Englewood Cliffs, NJ, 1973).

    Google Scholar 

  48. G. Simmons, H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (MIT Press, Cambridge, MA, 1970).

    Google Scholar 

  49. H. Tada, P.C. Paris, G.R. Irwin: The Stress Analysis of Cracks Handbook (Del Research Corporation, Hellertown, PA, 1973).

    Google Scholar 

  50. M.A. Phillips, R. Spolenak, N. Tamura, W.L. Brown, A.A. MacDowell, R.S. Celestre, H.A. Padmore, B.W. Batterman, E. Arzt, J.R. Patel: X-ray microdiffraction: Local stress distributions in polycrystalline and epitaxial thin films. Microelectron. Eng. 75, 117 (2004).

    Article  CAS  Google Scholar 

  51. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).

    Article  CAS  Google Scholar 

  52. C.J. Youngdahl, J.R. Weertman, R.C. Hugo, H.H. Kung: Deformation behavior in nanocrystalline copper. Scripta Mater. 44, 1475 (2001).

    Article  CAS  Google Scholar 

  53. R. Armstrong, I. Codd, R.M. Douthwaite, N.J. Petch: Plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45 (1962).

    Article  CAS  Google Scholar 

  54. H.J. Bunge: Texture Analysis in Materials Science: Mathematical Methods (Butterworths, London, 1982).

    Google Scholar 

  55. U.F. Kocks: Relation between polycrystal deformation and single-crystal deformation. Metall. Trans. 1, 1121 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Vlassak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Y., Tsui, T.Y. & Vlassak, J.J. The mechanical properties of freestanding electroplated Cu thin films. Journal of Materials Research 21, 1607–1618 (2006). https://doi.org/10.1557/jmr.2006.0195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0195

Navigation