Skip to main content
Log in

Indentation mechanics of Cu-Be quantified by an in situ transmission electron microscopy mechanical probe

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In situ transmission electron microscopy was used to study, in real time, the sub-surface deformation taking place in Cu-Be alloy during nanoindentation. A twinned region of the material was indented with a sharp tungsten tip in a specially developed transmission electron microscopy (TEM) holder. A flexible hinge-based force sensor was used to measure the force on the indenter, and the force-displacement curve for the tip was obtained by tracking the tip in the sequential images of a TEM video of the indentation process. Step-like structures ~50 nm in size resulting from the tip surface roughness were observed to generate clusters of dislocations in the sample when they come in contact with the softer Cu-Be. With this setup, the forces and the mean pressure associated with such an individual deformation event in a nanostructured TEM sample were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Haque and M.T.A. Saif: In situ tensile testing of nano-scale specimens in SEM and TEM. Exp. Mech. 42, 123 (2002).

    Article  CAS  Google Scholar 

  2. T. Kizuka, K. Yamada, S. Deguchi, M. Naruse and N. Tanaka: Cross-sectional time-resolved high-resolution transmission electron microscopy of atomic-scale contact and noncontact-type scannings on gold surfaces. Phys. Rev. B 55 R7398 (1997).

    Article  CAS  Google Scholar 

  3. A. Erts: Lõhmus, R.Lõhmus, H. Olin, A.V. Pokropivny, L. Ryen, and K. Svensson: Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope. Appl. Surf. Sci. 188, 460 (2002).

    Article  CAS  Google Scholar 

  4. M.A. Wall and U. Dahmen: An in situ nanoindentation specimen holder for a high voltage transmission electron microscope. Microsc. Res. Technol. 42, 248 (1998).

    Article  CAS  Google Scholar 

  5. A.M. Minor, J.W. Morris, Jr., E.A. Stach: Quantitative in situ nanoindentation in an electron microscope. Appl. Phys. Lett. 79, 1625 (2001).

    Article  CAS  Google Scholar 

  6. M.S. Bobji, C.S. Ramanujan, R.C. Doole, J.B. Pethica, and B.J. Inkson: An in situ TEM nanoindenter system with 3-axis inertial positioner, in Mechanical Properties Derived from Nanostructuring Materials, edited by D.F. Bahr, H. Kung, N.R. Moody, and K.J. Wahl (Mater. Res. Soc. Symp. Proc. 778, Warrendale, PA, 2003), p. 105.

    CAS  Google Scholar 

  7. M.S. Bobji, C.S. Ramanujan, J.B. Pethica, and B.J. Inkson: Proceedings of International Congress on Electron Microscopy, Durban, 941 (2002).

  8. M.S. Bobji, C.S. Ramanujan, J.B. Pethica, and B.J. Inkson: A miniaturized TEM nanoindenter for studying material deformation in situ. Meas. Sci. Technol., (submitted).

  9. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).

    Book  Google Scholar 

  10. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  11. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 610 (1986).

    Google Scholar 

  12. K. Herrmann, N.M. Jennett, W. Wegener, J. Meneve, K. Hasche and R. Seemann: Progress in determination of the area function of indenters used for nanoindentation. Thin Solid Films 377-378, 394 (2000).

    Article  CAS  Google Scholar 

  13. M.S. Bobji and S.K. Biswas: Deconvolution of hardness from data obtained from nanoindentation of rough surfaces. J. Mater. Res. 14, 2259 (1999).

    Article  CAS  Google Scholar 

  14. H-J. Weiss: On deriving Vickers hardness from penetration depth. Phys. Status Solidi A99, 491 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobji, M.S., Pethica, J.B. & Inkson, B.J. Indentation mechanics of Cu-Be quantified by an in situ transmission electron microscopy mechanical probe. Journal of Materials Research 20, 2726–2732 (2005). https://doi.org/10.1557/JMR.2005.0332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0332

Navigation