Skip to main content
Log in

Internal Friction Study of a Composite with a Negative Stiffness Constituent

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Composites with negative stiffness constituents can exhibit material properties that exceed conventional bounds. Composites with VO2 as negative stiffness inclusions and tin as the stabilizing matrix were prepared via powder metallurgy. Specimens were tested over a range of temperature in torsion using broadband viscoelastic spectroscopy. Composites processed via powder metallurgy exhibited internal friction anomalies over a broad range of temperatures, in contrast to the single, sharp anomalies reported previously from cast specimens. The detailed material behavior encompassed a variety of responses, which were also dependent on the number of thermal cycles. Composite theory predictions assuming a distribution of negative shear moduli can account for peak broadening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Lakes: Foam structures with a negative Poisson’ ratio. Science 235, 1038 (1987).

    Article  CAS  Google Scholar 

  2. R.S. Lakes: Extreme damping in compliant composites with a negative-stiffness phase. Philos. Mag. Lett. 81, 95 (2001).

    Article  CAS  Google Scholar 

  3. R.S. Lakes and W.J. Drugan: Dramatically stiffer elastic composite materials due to a negative stiffness phase? J. Mech. Phys. Solids 50, 979 (2002).

    Article  Google Scholar 

  4. E.K.H. Salje: Phase Transformations in Ferroelastic and Coelastic Crystals, (Cambridge University Press, Cambridge, U.K., 5, 1990), p. 5.

    Google Scholar 

  5. R.S. Lakes, T. Lee, A. Bersie and Y.C. Wang: Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565 (2001).

    Article  CAS  Google Scholar 

  6. Y.C. Wang, M. Ludwigson and R.S. Lakes: Deformation of extreme viscoelastic metals and composites. Mater. Sci. Eng. A 370, 41 (2004).

    Article  Google Scholar 

  7. G.F. Vander Voort: Metallography Principles and Practices (McGraw-Hill, New York, 1984), p. 691.

    Google Scholar 

  8. T. Lee, R.S. Lakes and A. Lal: Resonant ultrasound spectroscopy for measurement of mechanical damping: Comparison with broadband viscoelastic spectroscopy. Rev. Sci. Instrum. 71, 2855 (2000).

    Article  CAS  Google Scholar 

  9. T. Jaglinski and R.S. Lakes: Anelastic instability in composites with negative stiffness inclusions. Philos. Mag. Lett. 84, 803 (2004).

    Article  CAS  Google Scholar 

  10. J.S. Hirschhorn: Introduction to Powder Metallurgy (American Powder Metallurgy Institute, New York, NY, 1969).

    Google Scholar 

  11. P. Jin and S. Tanemura: Formation and thermochromism of VO2 films deposited by RF magnetron sputtering at low substrate temperature. Jpn. J. Appl. Phys. 33, 1478 (1994).

    Article  CAS  Google Scholar 

  12. C.G. Granqvist Energy-efficient windows: Present and forthcoming technology, in Materials Science for Solar Energy Conversion Systems, edited by C.G. Granqvist (Pergamon Press, Oxford, U.K., 1991), pp. 106–1

  13. X.J. Zhang, Z.H. Yang and P.C.W. Fung: Dissipation function of the first-order phase transformation in VO2 ceramics by internal friction measurements. Phys. Rev. B 52, 278 (1995).

    Article  CAS  Google Scholar 

  14. E.K.H. Salje: Phase Transformations in Ferroelastic and Co-elastic Crystals (Cambridge University Press, Cambridge, U.K., 1990), p. 33.

    Google Scholar 

  15. L.A. Ladd and W. Paul: Optical and transport properties of high quality crystals of V2O4 near the metallic transition temperature. Solid State Commun. 7, 425 (1969).

    Article  CAS  Google Scholar 

  16. J.M. Gregg and R.M. Bowman: The effect of applied strain on the resistance of VO2 thin films. Appl. Phys. Lett. 71, 3649 (1997).

    Article  CAS  Google Scholar 

  17. K.Y. Tsai, T. Chin, H.D. Shieh and C.H. Ma: Effect of as-deposited residual stress on transition temperatures of VO2 thin films. J. Mater. Res. 19, 2306 (2004).

    Article  CAS  Google Scholar 

  18. R.J. McCabe and M.E. Fine: Creep of tin, Sb-solution-strengthened tin, and SbSn-precipitate-strengthened tin. Metall. Mater. Trans. 33A, 1531 (2002).

    Article  CAS  Google Scholar 

  19. P. Adeva, G. Caruana, O.A. Ruano and M. Torralba: Microstructure and high temperature mechanical properties of tin. Mater. Sci. Eng. A 194, 17 (1995).

    Article  Google Scholar 

  20. C.H. Griffiths and H.K. Eastwood: Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide. J. Appl. Phys. 45, 2201 (1974).

    Article  CAS  Google Scholar 

  21. D. Maurer and A. Leue: Investigation of transition metal oxides by ultrasonic microscopy. Mater. Sci. Eng. A 370, 440 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Lakes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaglinski, T., Stone, D. & Lakes, R.S. Internal Friction Study of a Composite with a Negative Stiffness Constituent. Journal of Materials Research 20, 2523–2533 (2005). https://doi.org/10.1557/jmr.2005.0316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0316

Navigation