Skip to main content
Log in

Doubling the Critical Size for Bulk Metallic Glass Formation in the Mg−Cu−Y Ternary System

  • Rapid Communication
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mg−Cu−Y alloys with optimal glass forming ability have been found at off-eutectic compositions. The critical size for bulk metallic glass formation at the pinpointed compositions more than doubles that of the previously discovered eutectic Mg65Cu25Y10 alloy, leading to fully glassy rods with near-centimeter diameters in the ternary system upon copper mold casting. The result is a striking demonstration of the strong composition dependence of the glass forming ability, as well as of the need to scrutinize off-eutectic compositions. The implications of the discovery are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).

    Article  CAS  Google Scholar 

  2. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  3. Y. He, R.B. Schwarz and J.I. Archuleta: Bulk glass formation in the Pd−Ni−P system. Appl. Phys. Lett. 69, 1861 (1996).

    Article  CAS  Google Scholar 

  4. A. Inoue and A. Takeuchi: Recent progress in bulk glassy alloys. Mater. Trans. 43, 1892 (2002).

    Article  CAS  Google Scholar 

  5. Z.P. Lu, C.T. Liu, J.R. Thompson and W.D. Porter: Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 92, 245503 (2004).

    Article  CAS  Google Scholar 

  6. V. Ponnambalam, S.J. Poon and G.J. Shiflet: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).

    Article  CAS  Google Scholar 

  7. D.H. Xu, G. Duan and W.L. Johnson: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Let. 92, 245504 (2004).

    Article  Google Scholar 

  8. A. Inoue: Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog. Mater. Sci. 43, 365 (1998).

    Article  CAS  Google Scholar 

  9. F. Guo, S. Enouf, G. Shiflet and J. Poon: Role of atomic size on glass formability and thermal stability of Al-based amorphous alloys. Mater. Trans. JIM 41, 1406 (2000).

    Article  CAS  Google Scholar 

  10. A. Inoue, A. Kato, T. Zhang, S.G. Kim and T. Masumoto: Mg−Cu−Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans. JIM 32, 609 (1991).

    Article  CAS  Google Scholar 

  11. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto: Mg−Cu−Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Mater. Trans. JIM 33, 937 (1992).

    Article  CAS  Google Scholar 

  12. K. Amiya and A. Inoue: Thermal stability and mechanical properties of Mg−Y−Cu−M (M = Ag, Gd) bulk amorphous alloys. Mater. Trans. JIM 41, 1460 (2000).

    Article  CAS  Google Scholar 

  13. H. Men and D.H. Kim: Fabrication of ternary Mg−Cu−Gd bulk metallic glass with high glass−forming ability under air atmosphere. J. Mater. Res. 18, 1502 (2003).

    Article  CAS  Google Scholar 

  14. E.S. Park, W.T. Kim and D.H. Kim: Bulk glass formation in Mg−Cu−Ag−Y−Gd alloy. Mater. Trans. 45, 2474 (2004).

    Article  CAS  Google Scholar 

  15. H. Ma, E. Ma and J. Xu: A new Mg65Cu7.5Ni7.5Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability. J. Mater. Res. 18, 2288 (2003).

    Article  CAS  Google Scholar 

  16. H. Ma, J. Xu and E. Ma: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003).

    Article  CAS  Google Scholar 

  17. W.L. Johnson: Fundamental aspects of bulk metallic glass formation in multicomponent alloys. Mater. Sci. Forum 225-227, 35 (1996).

    Article  CAS  Google Scholar 

  18. D.B. Miracle: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).

    Article  CAS  Google Scholar 

  19. R. Busch, W. Liu and W.L. Johnson: Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J. Appl. Phys. 83, 4134 (1998).

    Article  CAS  Google Scholar 

  20. H. Tan, Y. Zhang, D. Ma, Y.P. Feng and Y. Li: Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La−Al−(Cu, Ni) pseudo ternary system. Acta Mater. 51, 4551 (2003).

    Article  CAS  Google Scholar 

  21. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu and E. Ma: Bulk metallic glass formation in the binary Cu−Zr system. Appl. Phys. Lett. 84, 4029 (2004).

    Article  CAS  Google Scholar 

  22. W.J. Boettinger: Growth kinetic limitations during rapid solidification, in Rapidly Solidified Amorphous and Crystalline Alloys, edited by B.H. Kear, B.C. Giessen, and M. Cohen (Elsevier Science Publishing, 1982), p. 15.

    Google Scholar 

  23. R.J. Highmore and A.L. Greer: Eutectics and the formation of amorphous alloys. Nature 339, 363 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H., Zheng, Q., Xu, J. et al. Doubling the Critical Size for Bulk Metallic Glass Formation in the Mg−Cu−Y Ternary System. Journal of Materials Research 20, 2252–2255 (2005). https://doi.org/10.1557/jmr.2005.0307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0307

Navigation