Skip to main content
Log in

Understanding the Glass-forming Ability of Cu50Zr50 Alloys in Terms of a Metastable Eutectic

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Interest in finding binary alloys that can form bulk metallic glasses has stimulated recent work on the Cu-Zr system, which is known to show glass formation over a wide composition range. This work focuses on copper mold casting of Cu50Zr50 (at.%), and it is shown that fully amorphous rods up to 2-mm diameter can be obtained. The primary intermetallic phase competing with glass formation on cooling is identified, and the glass-forming ability is interpreted in terms of a metastable eutectic involving this phase. Minor additions of aluminum increase the glass-forming ability: with addition of 4 at.% Al to Cu50Zr50, rods of at least 5-mm diameter can be cast fully amorphous. The improvement of glass-forming ability is related to suppression of the primary intermetallic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ray, B.C. Giessen and N.J. Grant: Formation of Cu-Zr metallic glasses. Scripta Metall. 2, 359 (1968).

    Article  Google Scholar 

  2. D. Turnbull: Under what conditions can a glass be formed? Contemp. Phys. 10, 473 (1969).

    Article  CAS  Google Scholar 

  3. W.L. Johnson: Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30, 81 (1986).

    Article  CAS  Google Scholar 

  4. A.L. Greer: Confusion by design. Nature 366, 303 (1993).

    Article  Google Scholar 

  5. A.L. Greer: Metallic glasses. Science 267, 1947 (1995).

    Article  CAS  Google Scholar 

  6. R.W. Cahn and A.L. Greer: Metastable states of alloys, in Physical Metallurgy, revised and enhanced edition, edited by R.W. Cahn and P. Haasen (Elsevier Sciences BV, Amsterdam, The Netherlands, 1996), Chap. 19.

    Google Scholar 

  7. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).

    Article  CAS  Google Scholar 

  8. T. Egami and Y. Waseda: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).

    Article  CAS  Google Scholar 

  9. D.B. Miracle, W.S. Sanders and O.N. Senkov: The influence of efficient atomic packing on the constitution of metallic glasses. Philos. Mag. 83, 2409 (2003).

    Article  CAS  Google Scholar 

  10. A.D. Le Claire: Interdiffusion between Cu and Zr. J. Nucl. Mater. 69-70, 70 (1978).

    Article  Google Scholar 

  11. F.R. Boer, R. Boom, W.C.M. Matterns, A.R. Miedema and A.K. Niessen: Cohesion in Metals (North-Holland, Amsterdam, The Netherlands, 1988).

    Google Scholar 

  12. E. Hellstern and L. Schultz: Amorphization of transition metal Zr alloys by mechanical alloying. Appl. Phys. Lett. 48, 124 (1986).

    Article  CAS  Google Scholar 

  13. M. Atzmon, J.R. Verhoeven, E.D. Gibson and W.L. Johnson: Formation and growth of amorphous phases by solid-state reaction in elemental composites prepared by cold working. Appl. Phys. Lett. 45, 1052 (1984).

    Article  CAS  Google Scholar 

  14. D. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson and C. Garland: Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx(x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).

    Article  CAS  Google Scholar 

  15. D. Xu, G. Duan and W.L. Johnson: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004).

    Article  Google Scholar 

  16. A. Inoue and W. Zhang: Formation, thermal stability and mechanical properties of Cu-Zr and Cu-Hf binary glassy alloy rods. Mater. Trans. 45, 584 (2004).

    Article  CAS  Google Scholar 

  17. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu and E. Ma: Bulk metallic glass formation in the binary Cu-Zr system. Appl. Phys. Lett. 84, 4029 (2004).

    Article  CAS  Google Scholar 

  18. M.B. Tang, D.Q. Zhao, M.X. Pan and W.H. Wang: Binary Cu-Zr bulk metallic glasses. Chin. Phys. Lett. 21, 901 (2004).

    Article  CAS  Google Scholar 

  19. A. Inoue and W. Zhang: Formation, thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys. Mater. Trans. 43, 2921 (2002).

    Article  CAS  Google Scholar 

  20. C.A. Angell: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).

    Article  CAS  Google Scholar 

  21. D.N. Perera: Compilation of the fragility parameters for several glass-forming metallic alloys. J. Phys. Condens. Matter 11, 3807 (1999).

    Article  CAS  Google Scholar 

  22. J.M. Borrego, A. Conde, S. Roth and J. Eckert: Glass-forming ability and soft magnetic properties of FeCoSiAlGaPCB amorphous alloys. J. Appl. Phys. 92, 2073 (2002).

    Article  CAS  Google Scholar 

  23. Z.F. Zhao and W.H. Wang: A highly glass-forming alloy with very low glass transition temperature. Appl. Phys. Lett. 82, 4699 (2003).

    Article  CAS  Google Scholar 

  24. X.H. Lin and W.L. Johnson: Formation of Ti-Zr-Cu-Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 (1995).

    Article  CAS  Google Scholar 

  25. Z.P. Lu, H. Tan, Y. Li and S.C. Ng: The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Mater. 42, 667 (2000).

    Article  CAS  Google Scholar 

  26. K.J. Zeng, M. Hämäläinen and H.L. Lukas: Phase diagram of Cu-Zr alloy. J. Phase Equilibria 15, 577 (1994).

    Article  CAS  Google Scholar 

  27. Á. Révész, A. Concustell, L.K. Varga, S. Suriñach and M.D. Baró: Influence of the wheel speed on the thermal behaviour of Cu60Zr20Ti20 alloys. Mater. Sci. Eng. A 375-377, 776 (2004).

    Article  Google Scholar 

  28. T.P. Weihs, T.W. Barbee and M.A. Wall: Hardness, ductility, and thermal processing of Cu/Zr, and Cu/Cu-Zr nanoscale multilayer foils. Acta Mater. 45, 2307 (1997).

    Article  CAS  Google Scholar 

  29. R. Arroyave, T.W. Eagar and L. Kaufman: Thermodynamic assessment of the Cu-Ti-Zr system. J. Alloys Compd. 351, 158 (2003).

    Article  CAS  Google Scholar 

  30. R.J. Highmore and A.L. Greer: Eutectics and the formation of amorphous alloys. Nature 339, 363 (1989).

    Article  CAS  Google Scholar 

  31. S. Bossuyt: Spatial localization of the nucleation rate and formation of inhomogeneous nanocrystalline dispersions in deeply undercooled glass forming liquids. Scripta Mater. 44, 2781 (2001).

    Article  CAS  Google Scholar 

  32. S. Bossuyt and A.L. Greer: Effects of positive feedback on crystallization kinetics and recalescence, in Amorphous and Nanocrystalline Metals, edited by R. Busch, T.C. Hufnagel, J. Eckert, A. Inoue, W.L. Johnson, and A.R. Yavari (Mater. Res. Soc. Symp. Proc. 806, Warrendale, PA, 2004), p. 15.

    CAS  Google Scholar 

  33. Z.P. Lu and C.T. Liu: Role of minor alloying additions in formation of bulk metallic glasses: A Review. J. Mater. Sci. 39, 3965 (2004).

    Article  CAS  Google Scholar 

  34. W.H. Wang, Z. Bian, P. Wen, Y. Zhang, M.X. Pan and D.Q. Zhao: Role of addition in formation and properties of Zr-based bulk metallic glasses. Intermetallics 10, 1249 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W.H., Lewandowski, J.J. & Greer, A.L. Understanding the Glass-forming Ability of Cu50Zr50 Alloys in Terms of a Metastable Eutectic. Journal of Materials Research 20, 2307–2313 (2005). https://doi.org/10.1557/jmr.2005.0302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0302

Navigation