Skip to main content
Log in

Microstructure and Optical Properties of Au-Y2O3-stabilized ZrO2 Nanocomposite Films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocomposite films consisting of gold nanoparticles embedded in an yttria stabilized zirconia (YSZ) matrix were synthesized at room temperature by radio-frequency co-sputtering from YSZ and Au targets at a 5 mTorr working pressure. The films were subsequently annealed for 2 h in 1 atm argon, with the annealing temperature varied from 600 to 1000 °C in steps of 100 °C. The composition, microstructure, and optical properties of the films were characterized as a function of annealing temperature by Rutherford backscattering spectrometry, scanning electron microscopy, Auger electron spectroscopy, x-ray diffraction, and absorption spectroscopy. An optical absorption band due to the surface plasmon resonance (SPR) of the Au nanoparticles was observed around a wavelength of 600 nm. Furthermore, the SPR band full width at half-maximum exhibited an inverse linear dependence on the radius of the Au nanoparticle, with a slope parameter A = 0.18, indicating a weak interaction between the YSZ matrix and the Au nanoparticles. The experimentally observed SPR dependence on nanoparticle size is discussed within the context of the Mie theory and its size-dependent optical constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.B. Murray, C.R. Kegar and M.G. Bawendi: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000).

    Article  CAS  Google Scholar 

  2. S. Link and M.A. El-Sayed: Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54, 331 (2003).

    Article  CAS  Google Scholar 

  3. A.D. MacFarland and R.P. Van Duyne: Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057 (2003).

    Article  Google Scholar 

  4. M. Ando, T. Kobayashi, S. Iijima and M. Haruta: Optical CO sensitivity of Au-CuO composite film by use of the plasmon absorption change. Sens. Actuators B 96, 589 (2003).

    Article  CAS  Google Scholar 

  5. K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa and M. Satou: Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties. J. Appl. Phys. 75, 3075 (1994).

    Article  CAS  Google Scholar 

  6. I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki and A. Nakamura: Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method. J. Appl. Phys. 79, 1244 (1996).

    Article  CAS  Google Scholar 

  7. Y. Hosoya, T. Suga, T. Yanagawa and Y. Kurokawa: Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina. J. Appl. Phys. 81, 1475 (1997).

    Article  CAS  Google Scholar 

  8. M. Boulouz, A. Boulouz, A. Giani and A. Boyer: Influence of substrate temperature and target composition on the properties of yttria-stabilized zirconia thin films grown by r.f. reactive magnetron sputtering. Thin Solid Films 323, 85 (1998).

    Article  CAS  Google Scholar 

  9. G. Johner and J.K. Schweitzer: Thermal-barrier coatings for jet engine improvement. Thin Solid Films 119, 301 (1984).

    Article  CAS  Google Scholar 

  10. S.C. Singhal: Advances in solid oxide fuel cell technology. Solid State Ionics 135, 305 (2000).

    Article  CAS  Google Scholar 

  11. C.F. Bohren and D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 82.

    Google Scholar 

  12. B.D. Cullity and S.R. Stock: Elements of X-ray Diffraction, 3rd ed. (Prentice-Hall, Upper Saddle River, NJ, 2001), p. 388.

    Google Scholar 

  13. A.R.L. Thermo (private communication, 2003).

  14. D.R. Lide: Handbook of Chemistry and Physics, 83rd ed. (CRC Press LLC, Boca Raton, FL, 2002).

    Google Scholar 

  15. G.L. Allen, R.A. Bayles, W.W. Gile and W.A. Jesser: Small particle melting of pure metals. Thin Solid Films 144, 297 (1986).

    Article  CAS  Google Scholar 

  16. K. Dick, T. Dhanasekaran, Z. Zhang and D. Meisel: Size-dependent melting of silica- encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312 (2002).

    Article  CAS  Google Scholar 

  17. G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada and A. Miotello: Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere. J. Appl. Phys. 92, 4249 (2002).

    Article  Google Scholar 

  18. N.E. Christensen and B.O. Seraphin: Relativistic band calculation and the optical properties of gold. Phys. Rev. B 4, 3321 (1971).

    Article  Google Scholar 

  19. H. Hövel, S. Fritz, A. Hilger, U. Kreibig and M. Vollmer: Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178 (1993).

    Article  Google Scholar 

  20. B.N.J. Persson: Polarizability of small spherical metal particles: Influence of the matrix environment. Surf. Sci. 281, 153 (1993).

    Article  CAS  Google Scholar 

  21. U. Kreibig and M. Vollmer: Optical Properties of Metal Clusters (Springer, New York, 1995).

    Book  Google Scholar 

  22. N.W. Ashcroft and N.D. Mermin: Solid State Physics (Saunders College Publishing, New York, NY, 1976), pp.10.

    Google Scholar 

  23. S. Zafeiratos and S. Kennou: A study of gold ultrathin film growth on yttria-stabilized ZrO2(100). Surf. Sci. 443, 238 (1999).

    Article  CAS  Google Scholar 

  24. S. Zafeiratos, S. Neophytides and S. Kennou: A photoelectron spectroscopy study of Au thin films on ZrO2 (100). Thin Solid Films 386, 53 (2001).

    Article  CAS  Google Scholar 

  25. V. Kresin: Collective resonances in silver clusters: Role of d electrons and the polarization-free surface layer. Phys. Rev. B 51, 1844 (1995).

    Article  CAS  Google Scholar 

  26. B. Palpant, B. Prével, J. Lermé, E. Cottancin, M. Pellarin, M. Treilleux, A. Perez, J.L. Vialle and M. Broyer: Optical properties of gold clusters in the size range 2-4 nm. Phys. Rev. B 57, 1963 (1998).

    Article  CAS  Google Scholar 

  27. S. Ferdigo, W. Harbich and J. Buttet: Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. Phys. Rev. B 47, 10706 (1993).

    Article  Google Scholar 

  28. P.B. Johnson and R.W. Christy: Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).

    Article  CAS  Google Scholar 

  29. D. Dalacu and L. Martinu: Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films. J. Appl. Phys. 87, 228 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Carpenter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirinakis, G., Siddique, R., Monokroussos, C. et al. Microstructure and Optical Properties of Au-Y2O3-stabilized ZrO2 Nanocomposite Films. Journal of Materials Research 20, 2516–2522 (2005). https://doi.org/10.1557/jmr.2005.0300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0300

Navigation